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ABSTRACT

The Regenerator, Cooler and Heater for the NASA Space Power Research Engine

(SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow

conditions. Each component has been analyzed independently' and in detail with the
--a,co-

regenerator being modeled as a/parallel-plates channel with a solid wall. The ends of the
pro

channel are exposed to two reservoir maintained at different temperature thus fa._agit-mt-ng cJ

/,_axial temperature gradient along the channel. The cooler and heater components have

been modeled as circular pipes with isothermal walls. Two different types of thermal

boundary conditions have been investigated for the cooler and heater, namely, symmetric

and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the

channel with the same temperature in throughout the velocity cycle whereas, in

asymmetric temperature inflow the flow enters with a different temperature in each half

cycle. The study was conducted over a wide range of Maximum Reynolds number

(Rema x) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative

amplitude of fluid displacement (A_) from 0.357 to 1.34.

A two dimensional Finite Volume method based on the SIMPLE algorithm was

used to solve the governing partial differential equations. Post processing programs were _



developedto effectively describethe heat transfermechanismunderoscillatory flows.

The computer code was validated by comparing with existing analytical solutions for

oscillating flows.

The thermal field have been studied with the help of temperature contour and three

dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer

coefficient have been examined. It has been concluded that in general, the frictional

factor and beat transfer coefficient are higher under oscillatory flow conditions when the

Valensi number is high. Also, the thermal efficiency decreases for lower .4 r values.

Further, the usual steady state definition for the heat transfer coefficient does not seem

to be valid. =_ _

i
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CHAPTER I

INTRODUCTION

The Stirling engine is a efficient power producing device based on the stirling

thermodynamic cycle. A few of its distinct features include high efficiency, very long

life, high reliability, and low noise. But, the most important feature which makes it a

strong candidate for a viable power source in the future is its ability to driven by virtually

any power source such as solar energy. Thus it is seen as a ideal power source for

remote applications such as space systems and remote terrestrial applications.

The Stirling Technology branch of NASA Lewis Research Center, Cleveland, have

been working on developing free-piston Stirling engines for both space and civil

applications (high and low power technology). Currently, research is going on to better

understand the thermodynamic losses in the NASA SPRE (Space Power Research

Engine), such that the efficiency can be maximized. A team from Cleveland State

University have been working on two dimensional modelling and analysis of the SPRE
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Figure 1.l Cross sectional view of the NASA Stirling Space Power Research Engine.
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heat exchangers to get a feel for the flow and heat transfer phenomenon occurring in the

heat exchangers. The thermal analysis of the heat exchangers done in this study is based

on the operating conditions of SPRE. Figure 1.1 shows a quarter sectional view of the

NASA's SPRE and its various components.

Figure 1.2 is a schematic representation of the major components of the free-pisto,1

Stirling showing the basic components and their relative locations. The basic power

output of the engine is based on the net work done on the piston by the working fluid or

gas. The energy inputs include the heat input to the heater for heating the gas. This heat

input is reduced by the addition of the regenerator thus making it a highly efficient

thermodynamic cycle. The oscillatory motion is achieved by the pressure changes in the

piston and displacer gas-springs thereby shuttling the working fluid to and fro from the

compression to the expansion space. In the shuttling process the gas absorbs heat energy

from the heater part of which is absorbed by the regenerator when the gas is on its way

to the cooler. And when the gas flows from the cooler to the heater the regenerator

releases this stored energy thereby reducing the net heat input to the cycle or engine.

The location of the heat exchangers between the compression and expansion space

results in an oscillatory flow in the heat exchangers. Therefore the design of the heat

exchangers (heater, cooler or regenerator) needs to consider the effect of oscillatory flows

on the thermal losses. Due to lack of sufficient data and analysis the heat exchangers

designers still use unidirectional, steady state correlations for the friction factor and heat

transfer coefficient. Since the flow losses and thermal losses work against each other the

phenomenon has to be understood to optimize the engine working conditions.
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Some analytical solutions have been derived for the flow between constant area

ducts assuming fully developed flows. But the thermal analysis and analytical solution

has been restricted to the presence of a linear axial temperature gradient (Kurzweg,

1985a). No thorough analysis has been done on different temperature boundary

conditions as present in the Stifling engine heat exchangers.

1.1 Objectives of the research

The present study concerns itself with the time dependent flow and thermal fields

in the heat exchangers of the NASA SPRE, namely the, cooler, heater and regenerator.

The flow in all the components was assumed to be laminar and incompressible. For the

analysis effort was made to model the appropriate geometry for each of the heat

exchangers and choose an efficient and reliable numerical method to solve for the

governing equations needed for the analysis. Once the flow and thermal fields were

established, the study focussed on the behavior of the instantaneous friction factor and

heat transfer coefficient with the:

,- Maximum Flow Reynolds Number (Re_)

Valensi Number or dimensionless frequency (va)

,- Relative amplitude of fluid displacement (At).

The study was conducted over a wide range of the above mentioned parameters

in order to correctly assess the effect of these parameters on the flow and thermal field.

Also, different thermal boundary conditions namely, the conjugate heat transfer type,



6

symmetric temperatureinflow and asymmetrictemperatureinflow were also explored

underoscillating flow conditions. Special efforts were made to validate the numerical

method by comparing the predictions with existing analytical solutions.
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CHAPTER II

LITERATURE REVIEW

The aim of this chapter is to synopsize the past work done on oscillatory flows.

The survey discusses any analytical solutions and experimental data available on

oscillatory flows. Also numerical simulations that have been done on oscillatory flows

have been addressed and finally there is a discussion on further investigations that are

needed to understand the effects of oscillatory flows.

There are two kinds of unsteady (cyclic) flows that one can find in the literature,

pulsatile and oscillatory flows. In pulsatile flows the fluid is set to motion by a

sinusoidally varying pressure gradient or velocity which has a non zero mean, which

means in a complete cycle there exists a net mass transfer across any cross section normal

to the primary flow direction. The non zero mean also implies that the primary direction

of the inflow does not change in a cycle. Whereas in oscillatory flows the flow is driven
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by a harmonically varying pressure gradient or velocity that has a zero mean. Given the

definitions of these two types of unsteady flows one is easily led to conclude that

oscillatory flows are a special case of pulsatile flows when the driving pressure gradient

or velocity approaches zero mean, which is not true at least mathematically since zero

mean flow is a singularity point. This singularity makes the oscillatory flows phenomena

a ver3' complex one, although qualitatively one can observe similar behavior between the

two kinds od flows. Since the present study concerns itself with only oscillatory flows

the review of pulsatile flows has been left out and interested readers can find an extensive

review of pulsatile flows in K0hler (1990) and Kwan (1992).

Before the survey is presented a brief description about the meaning of the term

"oscillatory flows" in the present context needs to be elaborated. One can find in the

literature about oscillatory flows in external flows (see Schlichting) where the flow pattern

around a harmonically oscillating body immersed in a fluid are discussed. That situation

is different from the one encountered in this study which is mainly concerned with

internal flows. The characteristic of oscillatory flows in a internal flow situation is that

the periodic driving force has a zero mean for a complete cycle, physically this means in

a whole cycle there is no net mass transfer across any cross section perpendicular to the

direction of the periodic input. Furthermore, in oscillatory flows because of the zero

mean the direction of the flow is actually reversed from one half cycle to the other half

cycle.

As the effects of oscillatory flows are completely different from unidirectional

flows which means the transition from laminar to turbulent oscillating flow is different.
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Many experimentalstudieshave beendoneon the transition criterion from laminar to

turbulent flow in oscillatory flows and a comprehensive review can be found in Seume

and Simon (1986a). Only a brief review of the experimental work directly related to the

presem study will be presented.

2.1 Analytical Solutions

One of the first analytical solution for the oscillatory flow problem was derived

by Stokes, who obtained the flow field about an infinite flat wall which executes a

sinusoidal motion ( See Schlichting ) in a stagnant fluid. The effect of the unsteady

motion on the flow field was recognized by the presence of what is now known as the

Stoke's layer. This layer is a small region close to the wall where the viscous diffusion

is concentrated and the region away from it is not effected at all by the motion of the

plate. Kurzweg and Chen (1988) did a heat transfer analysis on the above harmonically

oscillating plate when it is subjected to a constant axial temperature gradient.

Richardson (1928) in an acoustic experiment measured the velocity distributions

across an orifice of circular cross section and he found the peak velocity close to the wall

instead of the centerline of the orifice. This was theoretically verified by Sexl(1930) and

experimentally corroborated by Richardson and Tyler (1929-30) for the flow produced by

the reciprocating motion of a piston. They had mistakenly characterized the velocity

peaks as "annular effect" due to the circular geometry. But it has been shown later these

velocity shoots near the wall are characteristic of oscillatoR, flows even in parallel plates

situation and not due to any particular geometry.

From the literature surveys it appears that the laminar fully developed
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oscillator)' flows are fairly well documented. The fully developed solutions were derived

analytically by using parallel flow assumption and neglecting the initial conditions such

that the flow develops into periodically steady state. All the analytical work has been

done for constant area ducts and these are reviewed next including relevant numerical

simulations and experimental studies.

2.1.1 Two Dimensional Geometries

Uchida (1956) calculated the velocity profiles for laminar incompressible flow in

a circular tube subjected to a arbitrarily varying time dependent pressure gradient. He

linearized the Navier-Stokes equation by assuming parallel flow thereby dropping the

axial diffusion terms and was able to exactly solve the momentum equations by Fourier

decomposition of the time dependent pressure gradient term. His paper also appears to

be one of the first to distill out practically useful quantities as the wall shear stress.

Kurzweg (1985a,1985b) was one of the first to extend the analysis to include heat

transfer for both parallel plate and circular geometry. It is appropriate to mention that all

the analytical heat transfer solutions were derived for a thick wailed 2D geometry, that

is for the conjugated heat transfer problem. Kurzweg's analysis was based on the earlier

works of Chatwin (1975), Watson(1983), Joshi et al. (1983) whom found the diffusion

of contaminants in gases were greatly enhanced when subjected to flow oscillations.

Drawing an analogy for the diffusion of heat Kurzweg was able to arrive at a closed-form

solutions for the temperature distribution in the channel. His findings indicate that in

oscillatory flows if the fluid entering the channel has different specific enthalpy in one-

half period than the other half, then the axial heat transfer is greatly enhanced due to fluid
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oscillations. This heat transfer is further augmentedif the channel wall has a finite

thickness as it increases the heat storage/release capability of the wall. Kaviany (1990)

and Zhao Ling-de et al. (1991) did a similar analyses for circular tubes with similar

qualitative findings and in addition they also verified their theoretical predictions with

experiments. It should be mentioned here that this enhanced axial heat diffusion is an

undesirable effect for Stirling Engine application as the function of the regenerator (which

is sandwiched between the Heater and Cooler maintained at different temperatures) is to

minimize the axial transfer of heat from the Heater to Cooler and vice-versa.

Gideon (1986) using a mean parameter approach (average over cross section)

technique was able to arrive at practically useful relationships such as friction factor and

heat transfer coefficient for the oscillating flow in a channel, but in general the results

were not in agreement with the exact solutions. Although the technique proved useful for

one dimensional modeling of the flow field in the Stirling Engine Heat Exchangers.

Ozawa and Kawamoto (1991) correlated this enhanced axial diffusion in terms of

an effective Nusselt Number for a range of Prandtl numbers ( Pr ) and Reynolds Number.

They 9bserved that for higher Pr the lateral diffusion of heat and momentum penetrated

the same distance in other words the fluid behaved as though its Pr was unity for

sinusoidal motion of fluid in a pipe. Based on this observation they used a lumped-

parameter approach (two layered model) and arrived at a closed-form solution for the heat

transfer coefficient also they validated these correlations experimentally.

Kaviany (1986) extended the analytically investigations to include the effects of:

(i) viscous dissipation, (it) channel spacing ( height of the channel ), and (iii) wall
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thickness (Solid Thickness).

The above analytical investigations for laminar oscillating flows in constant area

two dimensional ducts with parallel flow assumptions can be summarized as follows:

- Additional external work is needed to sustain this type of flow due to

higher friction losses as the wall shear stress is augmented.

- When the frequency of oscillation is low the fully developed velocity

profile approaches the parabolic shape found in steady, whereas at high

frequencies the lateral momentum diffusion is restricted to the Stoke's

layer.

- Large quantities of heat can be transported across reservoirs maintained

at different temperatures connected by a channel without convective

transport of mass (Oscillatory flows).

There exists a particular frequency when the axial heat transport is

maximized.

2.2 tNumerical Simulations

Ibrahim et al. (1989,1990) carried out numerical simulations assuming hydrody-

namically developed flow and confirmed the analytical findings. Further more the effect

of constant temperature boundary conditions on the heat transfer coefficient was also

presented. Devalba M. et al. (1991) also simulated the conjugate heat transfer problem

under oscillating flow conditions using a finite element code and confirmed the analytical

predictions.

Ahn (1990) and KOhler (I 990) conducted extensive numerical investigations under
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turbulent flow conditions utilizing various turbulence models. Their findings indicate that

the two equation turbulence models are inadequate to correctly capture the effects of

accelerating and decelerating flows. Further turbulent and transition studies in oscillating

flows are documented in Koehler's doctoral thesis.

Recently Patankar and Oseid (1992) carried out a two dimensional heat transfer

analysis in a pipe under turbulent flow conditions. The boundary conditions were similar

to tha'_ of the Heater in the Stirling Engine and their study indicates the sensitivity of the

Nusselt number (lateral) to the phase shift between the wall heat flux and the bulk

temperature.

Hashim (1992) studied the effect of fluid oscillations on the heat transfer and skin

friction coefficient for various configurations of backward facing steps. Kwan (1992)

investigated the compressibilty effects in a channel for oscillating and pulsatile flows.

2.3 Experhnental Studies

A large part of the experimental research has been devoted to study the stability

and transition mechanisms of oscillatory flows and can be found in Seume (1988).

Seume (1988) carried out a number of experimental runs for different operating

parameters in order to understand the transition mechanisms in oscillatory flows and

eventually came out with an envelope identifying the laminar and fully turbulent regimes

on a Remu (Reynolds number based on the maximum velocity input and hydraulic

diameter) and Ira (Valensi numberl plot. Friedman (1991) later made detailed

3measurements at a particular operating point and with that database was able to extract

useful information about the effect of fluid oscillations on wall bounded flows.
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Yuan andDybbs (1992)experimentallystudiedandsimulatedthe regeneratorof

a Stirling engineunderoscillatory flow conditions. The studywasmainly concentrated

on theeffectof high frequencyandhigh pressureon theheattransfercoefficient between

the working fluid andsolid matrix in the regenerator.Their findings indicateoscillation

frequencyeffects both the temperature and heat transfer coefficient while the pressure

effects only the heat transfer coefficient. Furthermore the heat transfer coefficient is

enhanced significantly compared to that in unidirectional flows.

2.4 Summary

The survey presented above can be summarized as follows:

- Laminar fully developed flows seems to be well understood for

oscillatory flows. But the heat transfer analysis has been concentrated

mainly on the constant heat flux (boundary condition) problem.

- Currently there seems to no general consensus on the non dimensional

parameters to be used especially when it comes to the dimensionless

frequency. It has been referred to as Kinetic Reynolds number, Valensi

Number and Womersely number. But the trend among the Stifling engine

researchers seems to be adopt the definition of Valensi number.

- Because of the fluid oscillations the velocity profile and hence the

temperature profile take different shape as compared to unidirectional

flow except at low oscillation frequencies.

- In general all the physical quantities such as the pres-

sure,velocities,temperature etc. are out of phase relative to each
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significantly alter the friction factor and heattransfer coefficient.

- As far as laminar to turbulence transition is concerned the respective

regions are fairly well charted out and documented.
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CHAPTER HI

MATHEMATICAL DESCRIPTION OF THE PHYSICAL PHENOMENON

In order to quantitatively predict the physical phenomena one needs to describe

it in mathematical terms and measurable physical quantities. Once a mathematical

description is established (usually in the form of governing equations for the dependent

variables) the solution of these equations are sought. An important intermediate step

between the description and solution is the nondimensionalization of the governing

equations. This not only simplifies the equation and in some instances even reduce the

number of dependent variables, but also filters the natural physical parameters effecting

the phenomena. The following sections concern themselves with the above issues with

particular emphasis on the fundamental assumptions and approximations.

3.1 Governing Equations

Most real life fluid flow phenomena are mathematically represented by the well
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knownNavier-Stokes(N-S)equationswhicharebasedonthecontinuumhypothesis.The

N-S equationsare a set of nonlinear partial differential equationsarrived at by the

conservation of transport properties such as mass,momentumand energy for an

infinitesimalcontrol volume. In vectornotationthey areasfollows:

Consera,ation of mass,

O--EP+ V.(pff)= 0 (3.1)
&

Conservation of momentum,

Off
p-:-+ p(_.v)_: -vp + v._+f, (3.2)
_t

Conservation of Energy in terms of the enthalpy,

p_ + p(_.v)h---v.¢•

where

+ (ff-V)p] +_, (3.3)

• • is the divergence operator

V " represents the gradient vector operator

p • is the density

p " is the thermodynamic pressure

ff • stands for the velocity vector
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fg • stand for additional body forces

h : is the specific enthalpy of the fluid

: is the heat flux vector

_I, : is the dissipation function

The dissipation function is defined as,

¢ = 1 7 • def(ff) (3.4)
2

Here def(ff) stands for the rate of deformation tensor and is defined as,

1 [ 7ff + (7_" ]
def(ff) = -_

The superscript "*" denotes the transpose of a tensorial quantity.

(3.5)

Some points to

note in the above equations are when the gradient operator ( V ) acts on a vector quantity

it results in a tensorial quantity. The continuity and energy equations are scalar whereas

the conservation of momentum is a vector equation out of which follow three scalar

equations (assuming Euclidian space) depending upon the choice of coordinate system.

The above set of equations together with the boundary conditions are necessary to solve

the problem completely, but they are insufficient as there are more unknowns than the

number of equations. The following section wrestles with this problem by invoking some

fundamental assumptions and constitutive relations.

3.2 Constitutive Relations And Fundamental Assumptions
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The flow field is determined by the velocity ff and the thermal field by the

temperature I, therefore constitutive relations are used to reduce the equations (3. I)-(3.3)

in terms of these dependent variables. Firstly the stress tensor _ is expressed in terms

of the velocity gradients by assuming the working fluid to be Newtonian which along

with the Stoke's hypothesis is given by:

-- _f(u-3 - 2.1(v-f)
(3.6)

Here " I " denotes the unit tensor which is like the Kronecker delta in cartesian

tensor notation. Substituting the definition of rate of deformation tensor def(ff) in the

stress tensor and then taking its divergence the conservation equation of momentum

reduces to what is normally called the Navier-Stokes equations:

Off 2 V[ la ( V*ff)] (3.7)-vp + v.[.(vf)]+v-[_ (v,_')']+fs-- _p--_- + p (ff.V)tZ =

Since the present study is not concerned with buoyancy effects the body forces due

to gravity is assumed to be negligible and defining the pressure as:

2

v -p + _(v._)

equation (3.2) can be reformulated in the following form:

(3.8)

Off
p_-c- + p(_.v)e :-v;, + v.[,(vf)] + v-[o(v_)']

c_
(3.9)

As far as the conservation of energy equation (eq. 3.3) is concerned the first
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simplification isdoneby usingtheFourierheatconductionlaw which givesarelationship

betweenthe heatflux vector ( _ ) andthe temperaturegradient is:

¢---k[v(r)] (3.10)

The specific enthalpy of the fluid h is changed to temperature by using the

thermodynamic identity:

Dh DT ÷ (1-pT) Dp (3.11)
p--_ =pcp Dt Dt

where D( ) stands for the substantial derivative given by:
Dt

D() _ 8() + (if-V)() (3.12)
D t cOt

and 13denotes the bulk expansion coefficient ( or thermal expansion coefficient) defined

as:

(3.13)

And it is zero for incompressible fluids and lIT for ideal gases. Substituting equations

(3.11) and (3.13) in the conservation of energy equation (3.3) and with some algebraic

manipulations it reduces to:

]PCr _- +PCr(ff-V)T = V-[kV(T)] +pT _ +(ff-V)p +O
(3.14)

For an ideal gas the energy equation takes the form of:
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caT [cap ] (3.15)PCr--_+pcr(ffoV) T= Vo[kV(T)I + -_- +(ff-V)p +q_

Equations (3.1),(3.7) and (3.15) are sufficient to solve for the flow and thermal

field, but there are situations where they can be further simplified by the type of flow.

In this study two such classes of flows have been studied, namely incompressible flows

and thermally, expandable flows. The necessary condition for the establishment of

incompressible flows is that the Mach Number is much less than one ( M _: l) and if the

temperature gradients are low in the domain considered the fluid properties ( p, la, f3,k, cp )

are constant. Under this situation the continuity and momentum equations are greatly

simplified with lot of terms dropping out such as cap�cat in eq. (3.1) and V- [la (Vff)" ]

in eq. (3.9). An important implication of this is that the continuity and momentum

equations are decoupled from the energy equation, hence can be solved independently for

the velocity field without worrying about the thermal effects.

When there exists substantial temperature gradients in the domain at low Mach

numbers then the fluid properties are no longer constant and vary with temperature (only).

Such low speed compressible flows are called thermally expandable flows or anelastic

flows. It usually implies the density of the working fluid varies only as a result of

isobaric thermal expansion; in effect removing any acoustic phenomena from theoretical

considerations. Under this situation no terms in equations (3.1) and (3.7) drop out unlike

in the incompressible flow situation and further the energy equation now is coupled with

momentum equations now due to temperature dependent fluid properties.

If the Mach number is low ( M_I ) an interesting formulation for the energy
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equation(eq.3.15) results,the secondterm on the right handsideof eq. (3.15)and the

viscousdissipationfunction (_) becomesnegligibleand they drop out of the equation.

Then the energyequationis reducedto:

0T (3.16/
p cp--_- + pcp(ffoV)T = V-[kV(T)]

The above equation states that the energy equation in low speed flows is strictly

a balance between the convective and diffusive (conduction) processes. It should be

noted that the above formulation is the same for both incompressible flow and anelastic

or thermally expandable flow, but with the difference that in the former type of flow the

energ3' equation is uncoupled from the other the conservation equations, whereas in the

latter type of flow all the equations are coupled together and therefore must be solved

simultaneously. In the Stifling engine heat exchangers the flow speeds are very low

compared to the speed of sound (i.e low Mach number) and the above formulation for the

energy equation suffices.

Equations (3.1),(3.7) and (3.15) provide four equations for the four dependent

variab]es U, V,P and T for a two dimensional cartesian or axisymmetric coordinate

system. These equations are listed in the Appendix A in one generalized formulation.

The c_mplete set of partial differential equations as described in Appendix B together

with the boundary conditions are necessary and sufficient to describe the fluid flow and

heat transfer in oscillatory flows. The basic assumptions used to derive the theoretical

equations are summarized as follows:

- The fluid is a continuum.
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- NewtonianFluid.

- Stoke'shypothesis.

- Low Mach number.

- No body forcesor gravitationaleffects.

- Axisymmetric or two dimensionalgeometry.

- Fourierheatconductionlaw.

- No internal heat sources. - No radiation heat transfer.
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CHAPTER IV

_ONDIMENSIONAL PARAMETERS AND BOUNDARY CONDITIONS

Nondimensionalization of the physical problem is one of the most important steps

in the solution process of the governing equations. The nondimensional variables which

arise from this process not only simplify the problem but also serve to reveal key physical

aspects of the phenomena. Also normalization of the physical problem provides the

natural scales for the problem as dictated by the boundary conditions, physical constants,

and geometry. A dimensional analysis of the governing equations has not been presented

in this report although the various nondimensional variables are described in detail along

with their physical significance.

As mentioned earlier (Chapter II) in this report there seems to be no consensus on

the standardization of the dimensionless frequency in oscillator), flows and this is highly

desirable in order to correctly interpret the results and for future reference. It is the aim

of this chapter to clearly group the nondimensional parameters for oscillatory flows found
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in the literatureandphysically interpret them so as to make a case for consistent usage

in the future.

4.1  Talensi Number (Va)

There are the three different nomenclatures one comes across in the literature for

the dimensionless frequency in oscillatory flows. This nondimensional variable is the

natural outcome of oscillatory flows equations due to the presence of the unsteady term

in the Navier-Stokes equations. To be precise, it weighs the strength of the time

derivative term in the governing equations just as the Reynolds numbers weighs tile

relative strengths of the convection and diffusion terms. The three definitions of the

above variable are as follows:-

Valensi number,

Kinetic Reynolds number,

co (Dh/
2 - (4.1)

Womersely number,

Re

Dh 2

co . ( T)

v

(4.2)

(4.3)
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It should be mentioned that Kurzweg (1985a) with whose results the present

numerical simulations are compared with has used Dh/4 in the definition of Womersely

number instead of

channel.

Dh/2 in his investigations of oscillatory flows in a parallel plate

From the above definitions of the Valensi number (Va) and Kinetic Reynolds

number (Re,,) it is shown that they are the same but differ in the vocabulary. The

motivation to define it as the Kinetic Reynolds number (Re) can be traced to its
to

similarity in structure with the well known definition of Reynolds number. The Valensi

number can be physically interpreted as the ratio of viscous diffusion time scale

( Dh2/,av ) to the oscillation period ( l/w ). When the Va is low implies 1[_0-_ or the

viscous diffusion is fast relative to the oscillation frequency and the velocity profile

approaches the familiar parabolic shape as seen in steady flows. For higher Va due to

high frequency the viscous effects do not have the time to diffuse across the duct before

the convected fluid arrives, hence instead of the parabolic profile one sees the presence

of a small Stokes layer near the wall where the viscous effects are concentrated.

The Womersely number (t r) on the other hand gives a very geometrical

interpretation, it is the ratio of the width of the duct ( DJ2 ) to the viscous penetration

depth _.
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Despite the various meaningful definitions for the dimensional frequency, the

definition of Valensi Number (Va) has been adopted by the Stirling Engine researchers

and this definition will be used throughout this report.

4.2 I_1axhnum Reynolds Number (Re_)

Maximum Reynolds Number is the second similarity parameter or the

dimensionless variable which arises out the normalization of the governing equations. For

oscillating flows it is defined as follows:

P Um""DI' (4.4)

I.t

The velocity is scaled by the maximum velocity amplitude ( Umax ) instead of the

mean velocity since the mean velocity is zero in oscillatory flows.

The Maximum Reynolds Number (Remx) and Valensi Number (Va) together make

up the dynamic similarity parameters for two dimensional oscillatory flows.

4.3 Geometric Sinfilarity Parameters

This similarity parameters arise when the length scales are normalized as dictated

by the geometry of the problem. Since this work concerns itself with plane flows or two

dimensional geometries. The axial length (L) of the Heat Exchangers are normalized

with the Hydraulic diameter (Dh). Therefore the dimensionless axial length which reveals

itself after the normalization is L/Dh.
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4.4 Derived Sinfilarity Or Nondimensional Parameters

In oscillatory flows it is not unusual to find in the literature additional

nondimensional variables, derived from the fundamental variables described above.

4.4.1 Relative Amplitude of Fluid Displacement (At)

Relative amplitude of fluid displacement (At) is one such derived parameter and

it is defined as the maximum axial fluid displacement during one cycle divided by the

length of the duct. Essentially, it states how far the fluid is pushed into the duct

compared to the axial length of the duct for one oscillation period (if the fluid oscillated

inviscidly).

2 X_x (4.5)
A -

r L

Under the plug flow assumption ( uniform velocity across the cross section of the

duct), the Ar values indicate three different physical situations for a cycle:

Ar<l

ar _l

Ar >l

Some fluid does not leave the heat exchanger referred to as

"dead Volume" by some researchers.

All the fluid initially in the heat exchanger moves the length

of the channel in a oscillation cycle.

All of the fluid initially contained in the channel, at any time

during the cycle, is outside of the channel at some other

time during the cycle.
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From adifferentperspectiveAr indicates the volume of fluid displaced in one-half

cycle divided by the total volume of fluid contained in the duct. Since it is an geometric

similarity parameter it plays an important role in characterizing entrance effects.

4.4.2 5trouhal Number (Str )

Strouhal number is another derived parameter widely used in external flows as a

nondirnensional parameter for the frequency of vortex shedding. Analogously for internal

oscillatory flows the frequency of fluid oscillation _ is scaled by the Uwax/D h to arrive

at Strouhal number (Str ):

Str -
(a)

(4.6)

By a little algebraic manipulations it can be shown that the Strouhal number is not an

independent dimensionless parameter and relates the Valensi number (Va) and Maximum

Reynolds number (Re=sx) by the equation,

4Va
Str- (4.7)

R e=ax

Earlier Stirling Engine Heat exchangers were designed and operated based on the Str

and Remx values.
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4.5 Boundary Conditions For The Governing Equations

The governing equations presented above mathematically describe a whole class

of fluid flow problems, the way problems are differentiated from one another are by the

application of boundary conditions. Since the equations are solved in a finite domain the

boundary conditions for each of dependent variable needs to be specified along the

boundaries of the domain. For the present situation four different types of boundary

conditions were used to close the problem. All the boundary conditions for the particular

boundary is based on the Figure 4.1.

4.5.1 Solid Walls

Along the walls by virtue of no-slip, the fluid velocity is zero assuming the walls

are impermeable. For the energy equation the walls can either be maintained at constant

temperature or be a source of constant heat flux. Mathematically this can be expressed

as,

= kOT. A
U,_ u V,,_tt= O, T= T,,_.tl OR - -_n)_u--td_,_u

where the partial derivative w.r.t n implies gradient normal to the wall.

(4.8)

4.5.2 Symmetry Planes

On symmetry planes or axis of symmetry the normal gradient of the tangential

velocity and the normal velocity are zero as far as the momentum equations are
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concerned. By symmetry the normal gradient of the temperature is also zero for the

energy equation, physically this implies the symmetry plane behaves as an adiabatic wail.

These can be formulated for the plane shown in figure 4.1 as:

_U 0T
- V- - 0 (4.9)

ey ey

4.5.3 Inlet Plane

On the inlet planes mathematically the boundary conditions are of Dirichlet type

i.e. values of the dependent variables are specified. Thus

U,. = U,_ Sin(_O

V_, = 0 (4.10)

T = T,,

It should be noted that the above equations are based on the inlet plane as shown

in Fig. 4.1. The U velocity is time dependent and varying sinusoidally whereas the

temperature is fixed w.r.t time.

4.5.4 Outlet Plane

At the outlet plane one does not know the boundary conditions apriori the normal

practice is to keep the domain long enough such that the diffusive fluxes are negligible

normal to the plane. Additional physical constraint for the momentum equations is

derived by observing that for incompressible flows the mass fluxes are conserved. The
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mathematicalformulationfor the boundaryconditionsare:

OU aV aT
- - -0 (4.11)

Ox _x _x

For oscillating flows the inlet and outlet plane are reversed after each half cycle

due to the zero mean flow restriction. For instance if the cycle begins with the flow

entering from the East side after half period the flow enters from the west side.

4.5.5 Solid-Fluid Interface

This boundary condition is needed in the conjugate heat transfer problem, where

there is an interaction between the fluid within the channel and the surrounding solid

region. At a solid-fluid interface the heat flux across the interface is conserved by energy

conservation principle and the temperature is continuous. These two boundary conditions

have been implicitly implemented in the code since the solid-fluid domain has been

solved together.



34

CHAPTER V

NUMERICAL SOLUTION TECHNIQUE

The governing partial differential equations (PDEs) which are generally

elliptic in nature, are not tractable to analytical solving procedures.They are numerically

integrated by one of the many discretization procedures. In this chapter,the solution

methodology is discussed.

Currently, there are numerous methods and ways to solve the partial

differential equations arising in fluid mechanics, some of the existing popular and fairly

standard methods are based on one of the following discretization schemes:

i) Finite Volume Methods (FVM)

ii) Finite Element Methods (FEM)

iii) Finite Difference Methods (FDM)

The underlying principle behind all these methods are one and the same,

which is dividing the domain into smaller subdomains and thereby reduce the partial
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differential equationsinto asetof linearizedalgebraicequations.Thedifferencesamong

the methodsarisefrom theway thesealgebraicequationsarearrivedat from theoriginal

PDEs. Sinceno singlemethodhastill now beenprovento besuperiorto the other, the

finite volume method (FVM) has been chosenin this study. One of the distinct

advantagesof thefinite volumemethodis thatit lendsitself naturallyto thePDEsarising

in fluid mechanicsproblems.

The code developedto solve the governing equationsis basedon the

researchcodecalledC.A.S.T(ComputerAidedSimulationof TurbulentFlows)developed

by Peric and Scheuerer( SeePeric et al. ). The original codelimited in its ability to

handlevariety of thermalandtime dependentboundaryconditionshasbeenbroadened

to includethesetypeof flows. Furtherthe numericalformulationof the energyequation

hasbeenrevisedto handleconjugateheattransferproblemsuchasthat occurringin the

regeneratorof the Stirling engine.The objective of the following descriptionis (i) to

briefly describethediscretizationtechnique(ii) solutiontechniqueemployedto solvethe

algebraicequationsand(iii) discusstheconvergencecriterionemployed.

5.1 Principle Of Finite Volume Method

The finite volume method in general is based on the conservative property

of the partial differential equations (PDEs) since the equations which themselves are

derived from the conservation of certain physical quantities. This important attribute of

the equations makes it possible to collapse all the individual equations into a generalized

transport equation, thus facilitating one common algorithm for all the PDEs. Therefore

for any generalized scalar variable _ the transport equation can be written as:
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a(pq,)
+

(pub-r÷ _(p -r, ) = s, (5.1)
at r

Here the value of n determines the type of axes system used, when n" 0

then the transport equation reduces to the cartesian coordinate system with the

independent variable r being changed to the more familiar y. And, when n = 1 the

equation represents the transport equation for a axisymmetric coordinate system. All the

individual differential equations for each conservation equation (e.g. mass,momentum) can

be recovered from equation (5.1) by choosing appropriate physical quantity for _ r', and 5',

which are given in Table 5.1 below:

Table 5.1: Interpretation of + ,F, and S, in the transport eq. (5.1)

Equation _ F,

Continuity 1 0

x-Momentum U la

r-Momentum

Energy

V

CrT k

T

s,

0

c3P+ 8. OU 1 8. ,OV.
--_'x _xtP-_-X)+r-'_xtlar -_x )

-Tr -b7

0
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The generaldiscretizingprocedurefor the transportequationgiven in eq.

(5.1) is as follows. In the first step, the computational domain is divided into small

rectangular control volumes. The grid points where the dependent variables are solved

for lie at the geometric centre of the control volume. Then the transport equation 5.1 is

integrated over each control volume. By applying Gauss's theorem to the integral

equation results in a integro-differential equation. Physically the integro-differential

equation is a relation between the net increase of the considered quantity per unit time,

the total net convective and diffusive fluxes across the control volume boundaries and the

source (or sink) terms within the control volume. This integro-differential equation is

then discretized with some assumptions and linearization to arrive at the linear algebraic

equation for the control volume. If the above process is repeated for all the control

volumes one arrives at a set of linear algebraic equations for the transport equation 5.1.

The natural appearance of the fluxes at the control volume faces makes the whole scheme

globally conservative. These set of equations are then solved to give the values of the

considered quantity at the grid point locations. Special coupling algorithm is used to link

all the sets of algebraic equations for a given physical quantity. A brief outline of the

above described is as follows for a detailed explanation the reader is referred to Peri_ and

Scheuerer (1989).

The outline will be presented with reference to the Cartesian coordinate

system, which means in the transport equation (5.1) n-0 and r =_'-
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5.2 Control Volume Variable Storage

Figure 5.1 show a pan of the integration domain which is subdivided into

small rectangular control volumes by the intersection of x and v lines. The code used

in this study uses the so called co-located variable grid arrangement. In the co-located

variable arrangement all the dependent variables ( U, V,T,...etc) are stored in the same

location as shown in figure 5.2. Patankar (1980) had shown how the co-located variable

arrangement gives rise to oscillatory (checkerboard) solutions but a special interpolation

procedure is used in the present code to determine the cell-face velocities (the main

reason for unphysical solutions) to suppress the checkerboard solution. In the discretiza-

tion scheme to be discussed next, a typical control volume (CV) containing the grid point

P (see figure 5.2) is integrated. All the surrounding grid points are identified by their

sense of direction relative to the grid point P, such as the grid point E located to the right

of point P. All the quantities calculated at the CV faces are denoted by lower case

subscripts such as "e" for the quantity calculated at the east side cell face. The open

arrows denote the mass fluxes at the CV faces in the x and y directions.

5.3 Integro-Differential Equation

The first step in the discretization of the transport equation (eq. 5.1) is to

integrate it over a control volume ( by ) to yield:

fs1. c_t

Where

\
i
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8v = 8xSy (5.3)

is the two dimensional "volume" element in the cartesian coordinate system. The second

term in eq. (5.2) is the volume integral over the divergence of the convective and

diffusive fluxes. Applying Gauss's divergence theorem it is transformed into a surface

integral resulting in:

" -r a_ -r,_),_]ay,e(p¢)<s''+o, [(pu4> - ( u4> ox

-ay
(5.4)

: is,[ s, ]dr

A closer look at equation (5.4) reveals that it is nothing but a balance between the

rate of accumulation of (l) within the CV and the net transport of 4) by convection and

diffusion across the CV faces plus the source or sink terms within the CV. Further the

eq. (5.4) is still exact in the sense no approximations have yet been introduced. The next

step i$ the discretization of the eq. (5.4) thus introducing the approximations.

5.4 Diseretization Sehenle

The discretization of eq. (5.4) is done in two steps. In the first step the surface

and volume integrals appearing in are approximated by utilizing the mean value theorem.

The Iinearization of the coefficient are also done in this step. In the second step the mean

values of various transport quantities arrived at in the first step are discretized and related
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to the CV grid points.

5.4.1 First Level Approximations

The approximations for the integrals appearing in eq. (5.4) using the mean value

theorem involves two crucial assumptions, viz:

• the fluxes through the CV faces are approximated as the product of the mean flux

per unit area going through the centre of the particular CVface and the CV face

area.

• the integrals involving the time derivative and the source terms are approximated

as the product of the mean value of the integrand associated with the CV centre

and the CV.

• the coefficients are also linearized in this step. All the mass fluxes and the

diffusivities are evaluated with values from previous iteration.

Using the above three assumptions eq. (5.4) can be written as:

at "_' ax , v, Ox '

+ [m ";,_n-F ",,,,(-_y ),, 8x]- [m *_-F ",.,(_-y)_ 8 x]
(5.5)

S,_v

Where

m., = pU(Sy) , m. = O V(_)x) (5.6)

are the mass fluxes across the control volume faces in the x and y directions
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iteration.
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Also the stan'ed ("*") variables indicate values obtained from previous

The second step of approximations involves the discretization of the convective

fluxes, diffusive fluxes, source terms and time derivative.

5.4.2 Discretization of Convective Fluxes

This step involves the discretization of the convective fluxes or the mass fluxes

found in eq. (5.5). Special care has to be taken to find the values of the dependent

variables at the CV face (e.g. 4)e' etc) with respect to the values at the grid nodes ( i.e

the centre of the CV). The code used in this study uses a flux-blending approach or a

hybrid method to evaluate the variable at CV faces which is linear combination of two

methods with different order of accuracy, namely

the first-order Upwind Differencing Scheme (UDS), and

the second-order Central Differencing Scheme (CDS).

A pure CDS cannot be used in flow situations where there is a flow reversal and

recirculation as it can give rise to unphysical solutions (see Patankar, 1980), whereas UDS

albeit lower in accuracy ensures a diagonally dominant, positive definite coefficient

matrix. This is achieved in UDS by replacing the cell face value by the grid point or

node value closest to the CV face depending on the flow direction, unlike in CDS where

the cell face value is evaluated from a linear interpolation of adjacent grid point values.

Using the hybrid approach the value of the dependent variable at the east cell face can

be written as:
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Op, = OO,vz)s + _(_eCOS-_eUOS)" (5.7)

Here _, weighs the contributions of UDS and CDS and is 0 for a pure LIDS and l for

pure CDS. The "*" implies the values evaluated at a previous iteration level thus making

it a "deferred correction" approach. The deferred correction ensures the diagonal

dominance required for the solution of the algebraic equations even for a pure CDS. In

the present study a pure UDS (y = 0) was used for all the cases investigated.

5.4.3 Discretization of the Diffusive fluxes

The diffusive fluxes are the first derivative terms (gradient terms) in eq. (5.5)

multiplied by the diffusivity (1-'4). A second order central difference discretization

method is used to evaluate these terms and a typical form of it for the gradient at the

"east" cell face would be:

_-x _e -_v (5.8)
( ), -- _ Ax e

It is important to note the _ are evaluated at the grid node value (upper case).

formulations can be derived for the gradients at other cell faces.

5.4.4 Discretization of the Source Terms

The source terms appearing in the right hand side of eq. (5.5) is replaced by the

value obtained at the centre of control volume (or grid node P, see fig. 5.2), i.e.:

,5',8 v "- Sl, y_ v (5.9)

In case of non-linear special care has to be taken to linearize the source terms such that

Similar
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only the positive contributionsareaddedto the algebraic equation. For further details

regarding this see Peri_ and Scheuerer(1989).

5.4.5 Discretization of the Time Derivative

Two basic assumptions are utilized to discretize the time derivative term in eq.

(5.5). First, CV mean value of _ is approximated as the grid node value ¢p and

secondly, the value of dependent variable is assumed to be varying linearly with time.

Utilizing these two assumptions one gets:

a(p@) _, P@p- pOv@op (5.10)

(_t t - t o

The superscripts "0" stands for the values obtained from previous time step.

Since all the space derivatives and source terms are evaluated at the new or

current time level it makes the whole discretizing scheme fully implicit. In other words

there is no restriction on the time-step chosen.

5.4.6 The Final Form of the Discretization Equation

After substituting for the approximations described in Sections 5.4.1-5.4.6 into the

eq. (5.5) one gets the final discretization equation for grid node P as:

a,r,_pp = a_w + a_E + as,@s + aAA__, + bp (5.11)

A look at eq. (5.11) reveals that the value of the dependent variable at the grid node P

is dependent on the surrounding grid nodes. The coefficients "a" contain the

contributions from the convective and diffusive fluxes and "bt ," contains the source term.
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Thedetailedformulationsof thecoefficientscanbefound in Peri¢_andScheuerer(1989).

5.5 Solution Algorithln

The governing equations presented in Chapter 1TI (eqs. 3.1-3.4) are all coupled

together for a general fluid flow problem. For incompressible low speed flows the

momentum and continuity equations are strongly coupled together. Hence special

algorithms need to be used to solve for the dependent variables, in the numerical code

used in the present study the well known and tested SIMPLE algorithm (Semi-Implicit

Method for Pressure-Linked Equations) has been implemented. A brief outline of the

SIMPLE algorithm will be presented next. For unsteady flows the solution algorithm is

applied to each time step.

5.5.1 SIMPLE algorithm

The SIMPLE algorithm is sequential step by step solution procedure where each

of the governing equations (e.g. continuity,x-momentum, etc.) are solved one after another

and then coupled together by physically derived algebraic relations. The algorithm

consists of the following steps:

0) First step consists of initialization of all the dependent variables such that the

finite volume coefficients (the fluxes) and the pressure difference (source term)

in the momentum equations can be evaluated. Any sensible initial guess value can

be used, for unsteady flows such as the present problem values from previous

time step can be used as a good initial estimate.

1) Next the finite volume coefficients of the x-momentum equations are assembled.

Then the resulting set of linear algebraic equations are solved to yield the axial
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velocity U*. Since the resulting new velocity is only approximate (based on

initial guessed pressure), the algebraic equations have been solved by an iterative

solution algorithm instead of direct matrix inversion algorithm. These iterations

are called "inner" iterations and the number of these "inner" iterations can be user

controlled.

The same procedure (Step 1) is used to obtain the normal velocity V" from the

y-momentum equation.

Since the initial pressure is guessed, the velocities U ° and V" will not satisfy

the continuity equation even though they will satisfy the momentum equations.

In this step a pressure correction equation is derived (see Appendix B) to estimate

the pressure and its associated velocity and mass fluxes from the continuity and

momentum equations. These corrected velocities will then satisfy the continuity

equation but will throw the momentum equations out of balance in the process.

4) Once the velocities satisfying the continuity equations are found all the scalar

transport equations are solved in the present case the energy equation. The

energy equation is solved in the same process as described in Step 1. As the

energy equation is decoupled only one "inner" iteration is performed, although t

could have been solved after the true velocities have been found.

5) The residual norms are computed for all the conservation equations which in an

ideal case of correct solution should go to zero. These residual norms are
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normalizedby appropriatereferencequantities. If anyof thenormalizedresidual

norms is greater than the user specified convergencecriterion the algorithm

returnsto Step 1 and usesthe currentvaluesto evaluatethe new finite volume

coefficients.

6) If all the normalizedresidualsnormsaresmallerthan the specifiedconvergence

criterion thanconvergenceis declared. For unsteadyproblems,thetime counter

is incrementedby the timestepsize ( 8 t ) and the algorithm return to Step 0 with

the initial guesses for the dependent variables taken from the previous time step.

In the present study the convergence criterion was choosen to be 0.1% of the

reference residual norms. Further, special care has to be taken for oscillatory flows when

evaluating the reference mass flux for the residual normalization(Step 6). Since at the

instant of flow reversal the mean flow velocity is zero. In these situations the code has

been modified to use the reference mass flux based on the maximum inlet velocity

( U_,,., )"

5.6 Code Modifications For Oscillating Flows

The computer code CAST has been modified to account for the cyclical nature of

the oscillatory flows and the switch in the boundary conditions. Although care has been

taken to retain the structure of the code and utilize the Vectorizing capabilities of the

Cray YMP supercomputer. Briefly, few of the major changes include:

At flow reversal (0°,180°,360 _) the inlet and exit boundary planes are switched 0

account for the zero mean flow situation.

A new energy equation (assembly & evaluation of the FV coefficients) routine has
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beenwritten along with the proper boundary condition to solve for the heat

transfer problem.

,- The code has also been modified to solve the conjugate heat transfer. The change

has been made such that the numerical code is transparent to the presence of solid

and fluid region (i.e. the energy equations is solved together for the solid and

fluid regions. This has been achieved through modifications of the diffusive

coefficients and source terms details of which can be found in the book by

Patankar (1980).

In addition to these, minor modifications have been done to accelerate the

convergence of the equations.
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CHAPTER VI

OPERATING CONDITIONS AND GEOMF_TRIC MODELING

This chapter concerns itself with the nondimensional parameters conditions under

which the Stirling engine heat exchangers operates. This chapter also addresses the way

the heat exchangers are modelled numerically such that the geometry closely

appro,ximates to the one found in the engine. The operating parameters are given

specifically for the NASA SPRE (Space Power Research Engfi_c), the object of present

study. Figure 1.2 showed how the heat exchangers in the SPRE are located, the cooler

starts from the compression space and opens into the regencrator which in turn is

connected to the heater and which opens into the expansion sp_ce.

6.1 Operating conditions

The parameters under which the SPRE operates were taken from the one

dimensional code GLIMPS, which simulates a Stiding cycle eI_gine and has been used

ORtGff,_AL,P_._E IS
POORQUALn'Y
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extensively by researchers at NASA. The numerical simulation ef the heat exchangers

used in the present study were based on GLIMF'S and these are listed below in columar

format for the Regenerator, Cooler and Heater respectively.

Regenerator

PARAMETER

Hyd. Diameter D h, (m)

Wire Diameter D w, (m)

Matrix Length L,_ (m)
!

_as Te mPp[ ((Cold lid)e)(f_)

Valensi Number (Va)

Remax

Ar

GLIMPS CODE PRESENT STUDY

'
k'>-. _m I

5.0x10 --_

24.63x 10 .3 12.00

15 n/a

617.2+(12.6)Sin(wt+2.07) 274

345.1+(2.10)Sin(cot+2.3") 273

1.5

265

0.478 0.25

Cooler

PARAMETER

Hyd. Diameter D h, (m)

Tube Length L,

Number of Tubes _)

Mean Pressure (MIa)

ORiGiNAL P_E IS

OF. POOR"'QUALIT_

(m)

GLIMPS CODE PRESENT STUDY

1.524x10 3 5.0x10_

95.25x10 3 6.0

1584 1

15 n/a

9



/
Gas Temp. (Hot side) (/'K)

/

Gas Temp. (Cold side) (/'K)

Wall Temp. _)

Valensi Number (Va)

Re_x

m r
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345.1+(2.1)Sin (cot-2 .31)

332.7+(12.9)Sin (_ t+0.13 )

324.3+7.5xlOS Sin (cot+O .77 )

35O

300000

0.686

340,350

330,340

15ooo,3o.9. 

0.714

Heater

PARAMETER

Hyd. Diameter DI_, (m)

Tube Length L, (m)

Number of Tubes
!

Mean Pressure (Mth) /_

Wall Temp. (_K)

Valensi Number (Va)

Rernax

GLIMPS CODE

1.27x10 -3

90.17x10 -3

1632

15

625.8+(29.1) Sin ( _ t +O . 3 3 )

617.2+(12.6) Sin(o t+2.07)

324.3+ l.4xlO-4 Sin ( _ t +O . 76 )

88

16500

PRESENT STUDY

5.0x10 -2

7.0

i

n/a

630,620

610,620

65O

44,88 & 176

8250, 16500

& 33000

A Z
0.686 0.714

ORIG!R_,L, P_-_Z IS
OF pOOR'"QUALITY
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The regenerator parameters used in this study are diffrent from that predicted by

the GLIMPS code since the regenrator was modelled as a seperate entity. Whereas the

operating conditions for the regenerator got from GLIMPS is based on a complete

simulation of the Stifling engine i.e. including the cooler and heater. Also the wall

temperature fluctuations were assumed to be zero in the present study as they are small.

Working Fluid

The working fluid used in the numerical simulations was helium which is the same

as used in the SPRE. The following properties of helium at standar atmospheric pressure

were used for all the numerical simulations conducted in this study:

Density (kg/m 3)

Dynamic Viscosity (N.s/m_.

Specific Heat, @ O.kglh_2 1)

Thermal Conductivity, k,(W.ml._)

Prandtl Number ( Pr )

Regenerator Metal

0.200

2.83x10 -5

5200.00

0.20439

0.72

The regenerator metal used in the conjugate heat transfer problem was chosen to

be aluminum and the following properties at 20°C were used in this study:

Density (kg/m _) 2707.0/

Specific Heat, Cp (J.kgl$/'K 1) / 896.00

Thermal Conductivity, k,(W.m_A) 20.4

OF pOOR,_L)ALW_'
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Table 6.1: Test cases investigated in the present study for fluid flow analysis.

TEST

CASES

R I

Ci

C-_

C 3

C4

C 5

•_ema x

75

12000

15000

30000

60000

10000

20000

V_

2.5

400

175

35O

700

200

400

L / D h

6O

6O

6O

6O

60

70

7O

A r

0.250

0.25

0.714

0.714

0.714

0.357

0.357

C 6 40000 800 70 0.357

Hi 8250 44 70 1.340

H, 16500 88 70 1.340

n 3 33500 176 70 1.340



55

1#

102

Vo

ld

1of

......... f

C6C3 /
/

/ /

R2 'C5 _ /

,,,/// (';2 /

I/f/i; IIII

'7
I

/,, C1 H3 /
I II

• i II

453 "2 3 x Va °.s_ .-""_ _/// i-!

770Xv_

RI

.... i, ,,,i,.,,p_.l.l,i. I .... i, •,, i,,..f--_, i ,I,III .... I ' ' ',l,":i lq'l'l'l'_ .... I ' ' "1'"'1=_ ' I't'1' I .... I ""1'" r_'l'l'l

lo' 1# 1# lo' lo' lo'
RemGx

Figure 6.1. Envelope in which different Stirling Engines operate, together with: i)
Criterion for transition from laminar to turbulent flow, ii) Different test

cases studied in the present work.
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Table 6.1 lists all the cases studied in the present work. All the cooler cases begin

with the letter "C", the heater with "H" and the regenerator with "R" respectively. Figure

6.2 shows these cases on a Rem_.: and Va plot with various transition criterion found in

the literature for laminar to turbulent transition. As it can be seen the SPRE heater and

cooler heat exchangers operate on the transition regime. But a laminar analyis is still

pertinent since the flow inside the heat exchangers is part laminar and pan turbulent

within an oscillation cycle.



6.2 Geometric Mod_'_m

Figure 1.2 showed an

components consists of bundles

heater and cooler are modeled as

5"7

each component was considered since a

the scope of the present study. The reg

Stifling engine and is also one of the most difficult

present study this is resolved by modeling it as a 1:

similarity i.e. the matrix is replaced by a solid plates of

hydraulic diameter. In summary :

Heat Exchanger

Regenerator

Heater

Cooler

nceptual geometry of the SPRE, the heater and cooler

abes and the regenerator is a foil type matrix. The

tube with a finite length. Only one tube for

analysis involving all the tubes is beyond

is one of the most important in the

since it is a matrix. In the

[ates channel with geometric

with the same

Geometry Mo_

Parallel-Plates Channel

Circuler Tube

Circular Tube

ORIGffq,8,LP,_B ItS
OF POOR_'QOALiTY
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CHAPTER VII

OSCILLATING FLUID FLOW ANALYSIS

In this chapter results for the effect of flow oscillations on the velocity field and

associated friction losses are presented and discussed. The investigation has been carried

out for a wide range of nondimensional parameters with an eye on the Stifling engine

heat exchangers operating conditions. The cases investigated and their operating

parameters are given in Table 6.1 (Chapter VI).

Any numerical discretization method gives rise to so called truncation and

discretization errors. Hence, code validation is an important element in any numerical

simulation, in the present study the results of the numerical simulations have been

compared with existing analytical and experimental efforts. The fin'st two sections

(7.1,7.2) deal with this aspect concurrently with the fluid flow analysis.
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7.1 Fluid Flow in Parallel-Plates Channel and Code Validation

Since the regenerator is modelled as a parallel-plates channel, the fluid flow results

for this component are presented next.

7.1.1 Analytical Solution For The Velocity

Kurzweg (1985a) analytically solved the N-S equations governing the oscillatory

for flow between two-parallel-plates channel. The geometry investigated is shown in

Figure 7.1, where an array of parallel-plates channel are connected at ends, to reservoirs

maintained at different temperatures (only part of the geometry as simulated numerically

is shown). The flow is set to motion inside the channel by a sinusoidally varying

pressure gradient and a temperature difference between the end reservoirs ensures that a

constant axial linear temperature gradient is maintained along the channel throughout the

cycle. Also, he assumed the walls of the channel to be thick thus signifying a conjugate

heat transfer problem or a special case of the generalized constant heat flux thin wall

problem.

The channels were assumed to be long such that the fluid flow is "fully

developed" or to be more precise, the axial velocity profile is constant along the channel.

Under this assumption the momentum equations simplify considerably -- in fact, only the

axial momentum remains -- and are tractable to analytical solution techniques. By

neglecting the initial conditions he solved for the quasi-steady axial velocity distributions,

i.e, the velocity distributions does not change from one cycle to another cycle at any

instant in the cycle and is given by:

Where i -'-f:-Y is the imaginary unit, 81 denotes the real part of a complex
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u<n,t) =uo f(q)ei_t=uo_{ i-_2 [I- cosh ( VrI_ ) J
(7 .I}

quantity, Uo is an arbitrary velocity scale, _ = y / a the normalized coordinate distance

[ y ] normal to the flow direction, C the time, _ = a _ the Womersley number

or the nondimensional frequency (note Va =4 tt 2 ), and _ - [c3p / 0X[max ct 2 / p Uov the

nondimensional amplitude of the imposed sinusoidal pressure gradient. Once the velocity

distribution is established practically useful quantities such as the wall shear stress can

now be established. The temperature profile is discussed in the heat transfer section to

be presented later in this report.

7.1.2 Reformulation of The Analytical Solution

In order to compare the velocity profiles by the numerical solutions with

the analytical solution presented above special attention has to be given to carefully match

the boundary conditions. A direct comparison with the above solution could not be made

because of the different boundary conditions and the two-dimensionality of the numerical

simulations. In the derivation of the analytical solution the paralle?-plates channel was

assumed to be infinetly long (thus rendering it a one dimensional) and more importantly

the flow was established by applying a sinusoidally varyinz pressure gradient

[013 / Ox = [Op / Ox],_x cos ( w t )]- But in the numerical solution the domain is two

dimensional and finite in length with the flow being established by a sinusoidally varying

velocity [ U1n = Um x Sin (w t) ] at the inlet, the reason for choosing a velocity boundary

condition instead of a sinusoidally varying pressure boundary condition was the ease of

implementation numerically. Hence the analytical solution for a periodic velocity
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boundary condition has to be derived first and the proper axial location chosen. The axial

center of the channel was chosen for comparing with the theory since it is far away from

both the ends the effects of finite channel length can be assumed to be negligible at this

location. The solution for the velocity profile [Eq. (7.1)], essentially, stays the same but

a phase difference has to be added to account for the velocity bounadary condition. The

following equations outline the procedure to derive the phase difference t_u to be added

in order to correspond to the numerical simulations:

Given,

U_,,= Urea× Sin (tot) (7.2)

Now defining the Uo given in Eq. (7.1) to be the same as U,_x

the reference parameter used in numerical solution, or:

(maximum inlet velocity),

Uo --[_ (7.3)

and with little algebraic manipulations the nondimensional pressure gradient 3. in Eq. (7.1)

can now be related to the known numerical parameter tx (or V8 ) by the expression:

(X 2
3. - (7 .4)

I ull

Here 8u is a complex quantity and the double vertical lines ( II It ) stands for the

absolute value or modulus of the complex quantity. Its given by the expression,

8 =i- tanh(ivci-_) (7.5)

u

Also the phase difference Ou to be added to the analytical solution for a sinusoidally
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[ _(_.) (7.6)%,,=90 ÷ tan -_ {R (8_)

Where symbols _ and _ denote the real and imaginary parts of a complex number.

Finally, file velocity distribution corresponding the boundary condition given by Eq. (7.2)

is given by:

cosh ( ff-d ) J
(7.7)

Where £,_ (rl) is a complex function varying with the normal distance (_v) and given as:

_ i [i - cosh(_;E-a-_) ] (7.s)
<, 116oll cosh(V_i-_)

Equation (7.7) was used to compare with the numerical velocity predictions at the mid-

plane of the channel as the entrance effects due to the finiteness of the computational

domain can be assumed to be negligible at this axial location. The practically useful

quatities such as the wall shear stress (._w) (directly related to the friction factor) and the

pressure drop across the channel were also compared with the numerical predictions. The

corresponding equations for these two quantities can be easily derived from their

definitions and for a sinusoidal velocity input are given by:

Here o, is called as the wall shear stress augmentation factor which can be shown to be:

and _, the lead phase angle to be added to the wall shear stress can be expressed as :

OF = I"OOR;QUALITY
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I Z_ I 1_ = _ ; z, --7 [i IV-$-6-tanh ( ivci-_)]
i7 . lOa, 7. lob)

(z_) ] (7.11)4_ =¢_- tan -_ _ ( Z, )

The instantaneous pressure gradient across the channel can be obtained by integrating the

axial momentum equation across the channel and with little algebraic manipulations one

obtains:

_ d__Pdx=48(-P--)aPUmaxsin(wt÷_p)Dh2
(7 .12)

Here op and _p are the pressure gradient augmentation factor and lead phase angle

respectively, and are given as:

I Va (7 13 )Op = [o,cos_,] 2 + [-_ +o_sin_,] 2

Va +a_ sin_x_p = tan -_ 12 (7.14)
(_ COS _

Few interesting points need to be mentioned about the effects of Valensi number

on the augementation factors and phase angles for the wall shear stress and pressure drop.

When the Valensi number (va) is low the augentation factors (oT and o_,) approaches

unity and reduce to the familiar steady state formulations. For high Va the phase angles _

and _r asymptotically reach 45 o and 90 ° respectively or the wall shear stress and pressure

drop are out of phase with the inlet velocity by these angles. In addition for high Va the

Oi+ pOOm+++Q+JAU'i'Y
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augmentaion factors o, and op reach as high as 8 and 120 times the steady state value.

Figures (7.2) and (7.3) graphically demonstrates these effects, the augmentation factors

are show in Fig. 7.2 and the phase angles in Fig. 7.3 both of them plotted versus the

Valensi number (v a).

Equations (7.7),(7.10) and (7.11) were used to compare the axial velocity profile, wall

shear stress at the axial mid-plane and the instantaneous pressure drop across the channel

for the cases R, and R._. The results of these comparisons are discussed next.

7.1.3 Comparison with Numerical Simulation

Axial Velocity

The regenerator cases (R, and R 2) were chosen to validate the code against the

analytical solution. Fig. (7.4) shows a plot of the normalized axial velocity ( U/[Z_x )

vs. the nondimensional transverse distance (y/a) for the case R 1 Rema" 75 and Va --2.5

at different velocity phase angles (from 30 ° to 360" with 30 ° increment). The symbols

are used for the analytical solution (Eq. 7.7) and the dotted lines are used for the

numerical predictions. It should be appropriate to mention that the comparison was made

at the axial mid plane ( x = L� 2 ) as shown in Fig. 7.1. The velocity profile exhibits the

familiar parabolic profde due to the low frequecy (Valensi number) and is eompletly in

phase with the input velocity. The agreement between the analytical solution and the

numerical prediction is excellent. Fig. 7.5 shows a similar plot for the case R,,Ro,_a_ =

12000 and Va-- 400. Here one can observe the effect of the high Va on the velocity

profile, by the presence of a small Stoke's layer near the wall and with the flow field
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almost uniform in the channel core. The rationale behind this phenomena being that the

flow reversal (switch in the flow direction) takes place before the viscous effects have

time to diffuse down along the radius. Also it can be observed from the Figure (7.5) tile

flow reversal is also captured very accurately by the numerical code even for high va.

Again it can be seen that the agreement with the analytical solution is excellent.

Wall shear stress and Pressure Drop

Figures (7.6) and (7.7) shows the normalized wall shear stress versus the velocity

phase angle at the axial mid plane for the cases R_ and R= respectively. The

normalization factor chosen was the coefficient of the sine function in Eq. (7.9). The

symbols denote the analytical result (Eq. 7.9) the solid line represents the numerical

predictions. When the Valensi number is low, the _, (wall shear stress) is in phase with

the inlet velocity phase angle and its magnitude is exactly equal to the steady state value.

But for high Va (case R,, Fig. 7.7) the _, is not only 45 ° out of phase with the inlet

velocity but also its magnitude is augmented four times the steady state value.

Figures 7.8 and 7.9 show similar figures for the normalized pressure drop along

the channel plotted versus the velocity phase angle , again the symbols are for the

analytical solution (Eq. 7.12) and the solid line for the numerical prediction. Fig. 7.8 is

for the low valensi number case fR O and Fig. 7.9 for the high Va case (R2). But unlike

the wall shear stress the pressure drop for high va is 90 ° out of phase with the inlet

velocity and its magnitude is 40 times the steady state value.
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7.2 Comparison with Experhnental Data

This section is concerned with the comparison of the numerically predicted

solutions with the experimental work carried out at the University of Minnesota. For the

sake of" clarity a brief description of the oscillatory flow rig at the University of

Minnesota is also included.

7.2.1 Description Of the Experimental Setup

The experimental study by the researchers at University of Minnesota was

initiated to help understand the thermo-mechanical energy losses in the free piston Stirling

engines in order to come out with better designs. Their preliminary survey suggested, a

better understanding and characterization of the laminar to turbulent flow transition in

oscillatory flows (see Sueme and Simon,1988). The initial efforts were concerned with

understanding the mechanisms by which transition takes place and generally character-

izing the fluid mechanics of oscillatory flows. Recently (see Seume et ai.,1992), detailed

measurements were carried out at a particular operating point,namely that of the heater

tubes of NASA's Space Power Research Engine(SPRE). The velocity measurements were

taken at four axial stations located along the test section as shown in Fig. (7.10). Figure

(7.10) also demonstrates the flow oscillation in the test section 9or tube) being affected

by the piston-rod assembly. The test section is a circular pipe connected by smooth

nozzles at both ends; the smooth contour of the nozzles ensures no flow separation upon

entry. One end of the test section is connected to the flow delivery section the other end

opens out to the room. The inflow conditions at the two ends are nearly symmetric and
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the axial locations are represented by s / d where s is the distance from the open end of

the test section and it is also the complement of x/d (s/d=l-x/d, where _x is the

distance from the drive end of the test section). The Table 7.1 below gives the

dimensionless operating parameters for a typical heater tube of the Stirling engine, the

experimental test and the numerical simulation.

Table 7.1 : Experimental and Numerical operating parameters.

Parameters SPRE Heater Experiment Test Numerical Sire.

Rema _ 11700 11840 11840

va 80.0 80.2 80.2

Ar 1.03 1.22 1.22

L / D h 71.0 60.0 60.0

7.2.2 Experimental Observations

The preliminary experimental results carried out for different non dimensional

parameters identified transition from laminar to turbulent flow by two mechanisms :

,- Convective triggering by the incoming turbulent fluid.

," Instability of the developing boundary layer prior to the arrival of the convected

turbulent fluid.

Based on this observations a semi-empirical transition model has been proposed

IS
Oi t OC:   JALITY
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(see Simon et. a1.,1992) which accounts for the transition from laminar to turbulent flow

effected by convective triggering of the incoming turbulent slug. The model is still in its

seminal stages and hopes to improve the predictions for the skin friction and heat transfer

coefficient by identifying the laminar and turbulent portions of the cycle at a given axial

location. Further discussion of the model is beyond the scope of this study and can be

found in Simon et al (1992).

7.2.3 Numerical results and Comparison

In order to correctly verify the numerical predictions care must be taken to

accurately simulate the experimental conditions. Figures (7.11a) to (7.1 ld) shows how

the friction factor compares against the experimental findings at the four axial locations,

x/d = 0.33,16,30,44 and the comparisons were made for the results obtained from the

first oscillation cycle (i.e. the velocities have not settled to their quasi-steady states). The

reason why the first oscillation cycle was chosen because the turbulent flow profiles, as

was observed in the experiments, showed a cycle to cycle independence. That is, upon

flow reversal the fluid was stagnant in the whole tube or had no history of the effects

from previous cycle. A probable reason is due to the high mixing (turbulent diffusivity)

capacities of turbulent flows, the velocity gradient near the wall were effectively

smoothed out. Hence when the mean flow decelerates to zero velocity, the complete flow

field in the tube also achieves no motion. Unlike in laminar flows, where due to relatively

low diffusion the near wall velocity can be substantial compared to the core flow near

flow reversal thus exhibiting a cyclic dependency. The experiments suggest a transient

behavior in the sense that as the cycle begins slug (uniform inlet profile) fluid accelerates



as a inviscid (flat velocity profile) flow close to the centedineof the tube having a

growing boundary layer on the wall. These conditions are identical to when the fluid

accelerates from rest in the beginning of first cycle even though the experimental data

points are obtained after the flow has achieved a statistically steady state.

During the laminar portion of the cycle the friction factors predicted numerically

at the four axial positions compare very well with the experimental data as shown in the

Figures (7.1 la)-(7.1 ld). The experimental data depart or show higher friction factors than

the computed data after a particular velocity phase angle at each of the axial position

except x/d "_0.33. This phenomenon is attributed to the convective triggering of the

boundary layer from laminar to turbulent flow due to the arrival of the turbulent slug.

Whereas at x/d _0.33 which is close to the inlet the boundary layer is very thin and

stable preserving its laminar state throughout the cycle, but as we go further down along

the tube the growing boundary layer becomes very sensitive to the turbulent core and

transitions to turbulent flow, resulting in higher skin friction coefficient. The reason for

the high friction factor for the numerical results is that after the flow becomes turbulent

the fully-developed turbulent flow correlations were used. This was done to test an

empirical turbulence model (Simon et. ai.,1992) for oscillatory flows to see how the

predictions compare with the experimental result for the complete cycle. Also at

x/ph z0.33 the calculated friction factor are over predicted compared to the

experimental data due to different inlet geometry and being close to the inlet sensitive to

the "entrance" effects. But as one goes down the tube "entrance" effects subside and

predictions improve expectedly.
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7.2.4 Brief Summary

The experimental setup has been described in sufficient detail and a basis

for comparison with the numerical computations derived. The rationale for using transient

as oprosed to quasi steady computed data was explained since the experimental data was

collected after the flow inside the tube achieved a statistically steady state or no cyclic

variations. Finally the accuracy of the code is corroborated by good agreement with the

experimental data in the laminar portions of the cycle.



7.3 Friction Factor and Entrance Effects

The pressure drop required to set the fluid in motion is dependent on the so called

friction factor (C_) which is a nondimensional wall shear stress (zw). In the design of

heat exchanger it is very important to optimize between the thermal and friction losses.

The C_, is one such quantity which gives an estimate of the pumping power required to

set the fluid in motion in an heat exchanger. The C_, is defined as:

_w (7.15)
Cf= (i / 2) "P'Ui_

Here U_ is the average instantaneous velocity across the cross section of the channel.

Hence it shoots to infinity at the flow reversal instants of the cycle ((Y, 180 ° and 360 °)

by the above definition since the average instantaneous velocity is zero at these points in

a oscillation cycle.

Figures 7.12, 7.13 and 7.14 plots the normalized friction factor versus the

dimensionless axial distance at different velocity phase angles for the Cases C 2, C 5 and

I-I_, respectively. Only curves for half oscillation cycle (0 ° to 180 °) is shown (excluding

the flow reversal points) due to the symmetry (in time and space) and the definition of

Cg. The friction factor is normalized by the instantaneous full developed steady state

laminar friction factor correlation (.i.e. CeRe_ = 16 ). In this particular half of the cycle

the flow enters from the left end of the tube and exits at the right end of the tube ( x/D_,

- 0 to x/D h = 60 or 70). From these figures the effect of Rer_ x. Va and Ar can be

seen and these are described next.

The Rerm _ and Ar together control the magnitude or level of the friction factor



and any instant of the cycle. From Fig. 7.12 and 7.13 representing cases C, and C_ one

can see that the Cg value is higher for case C 5 than for case C2 because of the Iowa r

even though the Ren_, is lower for case C2. This is can be attributed to the fluid inertia

associated with the smaller fluid penetration into the tube, hence more pumping power

has to be introduced in the case of low At. In contrast the heater case H 2 has lower

values of friction factor because of the high Ar (see Fig. 7.14). Although for the same

value of relative amplitude of fluid displacement (A r) the magnitude of the friction factor

increases with Re_.

At some instants of the oscillation cycle the friction factor is negative, as can be

seen from Figures 7.12-7.14 at 150 ° velocity phase angle. Though it is unrealistic for the Cf

to be negative it simply means that the viscous forces augments the pressure forces. The

negative value is caused by "backflow" at the walls or the velocities in a small viscous

region close to the wall are flowing in a direction opposite to the primary flow direction.

This situation is typical of high va flows such as the cases C 2, C5 and H,_, where the

viscous effects are concentrated near a small region close to the wall (Stoke's layer) with

an inviscid core. The "backflow" or flow reversal at the wall occurs in the decelerating

portion of the cycle and happens earlier for higher Va which can be deduced from the

Figures 7.12-7.14. It should be noted here that the "backflow" at the wall is characteristic

of laminar oscillatory flows and does not exist when the flow is turbulent. The effect of

flow reversal can also be noticed at the tube exit (x/Dn - 60 or 70) during the

accelerating portions of the cycle (30 °) wherein the friction factor drops to value lower

than the asymptotic value. Another effect of Valensi number (Va) is the amplitude of the



friction factor at any axial location decreases with the va (see Figures 7.12-7.14). Tile

friction factor at any axial location is made up of a mean value plus a harmonic

component, the amplitude here refers to the amplitude of the harmonic function.

The "entrance" effects are directly related to the Ar value. Since it is difficult to

define fully developed flow in an unsteady situation it is difficult to define an "entrance"

length for oscillatory flows using the standard definition used for steady or unidirectional

flows. But for low Ar such as case C5 (Fig. 7.13) the friction factor is almost constant

along the length of the tube at any given time except for a small region close to the

entrance. And, this small length of the tube (the "entrance" length) where the friction

factor drops from infinity to the constant asymptotic value, grows longer as the cycle

advances in time. Therefore the "entrance" length behaves unsteadily and for the case C5

reaches a maximum value of 25 diameters (x/D1 _ - 25). Whereas for Cases C2 and H,

(Figures 7.12 and 7.14) the friction factor does not reach to an asymptotic value at any

instant of the cycle hence an "entrance" length is hard to define. The reason Ce does not

reach a asymptotic value can be ascribed to the high operating Ar values. But the drop

in the value of friction factor from infinity to a lower value occurs over a small length

for alI the cases suggesting that the "entrance" effects are almost negligible. This

observation is in contrast to steady flows where the "entrance" length increases with the

Reynolds number.
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CHAPTER VIII

OSCILLATING FLOW HEAT TRANSFER

Once the momentum and continuity equations are solved for then the energy

equation can be solved for tile thermal field. In this chapter the results of the thermal

analysis for the individual components of the Stifling engine are presented. First, the

thermal analysis for the regenerator which is a conjugate heat transfer type problem is

presented. In the section the code validation aspect is also covered. Second, the results

for the heater and cooler are presented with two different type of boundary conditions

(Symmetric and Asymmetric Inflow) are discussed and presented.

8.1 Conjugate Heat Transfer and Code Validation

In this section the conjugate heat transfer phenomena occurring in the

regenerator of the Stirling engine is discussed. A comparison of the numerical predictions

with the analytical results for the temperature profile is also made.
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8.1.1 Kurzweg Analysis (Analytical Solution)

For the two-parallel-plates channel with solid walls and connected at the

end to two reservoir at different temperatures (see Fig. 7.1 ), Kurzweg derived the solution

for the temperature profile within the channel and the solid. This phenomenon is very

similar to the one occurring in the regenerator of a Stirling engine. In the Stirling engine

the regenerator is placed between the cooler and the heater which ensures a temperature

gradient between the ends of the regenerator throughout the cycle. In the first half of the

cycle the flow enters from the hot end and heat is absorbed by the regenerator and in the

next half cycle when the flow enters from the cold end the absorbed heat is released to

the cold fluid. Thus regenerator acts as a heat source or heat sink during a complete

cycle.

The temperature profile for along the channel for a fully developed velocity was

derived by Kurzweg (1985a) for the geometry show in Figure 7.1. He assumed the

temperature profile to be given by:

T(x,y, t) = [Tx + 7ag(1]) e i_:] (8.1)

Here the term Tx is the constant linear temperature gradient along the channel i.e. the

temperature is assumed to be varying across the channel (normal y direction) superim-

posed on a constant axial temperature. And the function g(rl ) captures the variation

in the normal direction and for the fluid region is given by g_ (rl):

g:(rl) =K_cosh(zZ2"_=rl) +
Ipe iPe

+

=4Pr (Pr-I)

and for the solid portion is given by gs (rl):

_2(Pr-l)
f(_ ) (8.2)
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gs (1"I)= K2 cosh [Vq-6-P-r_ (e-q) ]
8.3)

The constants /<1 and K2 are:

K1 =

-IPe

_4 (Pr-l) Prcosh [_il_-it_] K tanh[_ri-P-ra]._1_ tanh[vq-61_a(e-l)]

8.4)

K2

KI cosh [VT--P-f_ ]
k Pe

+

a_ Pr (Pr - z )

cosh [__ (¢- I ) ]

8.5)

8.1.2 Numerical Predictions and Comparison

Cases Rj and R_ are the test cases used to compare the numerical predictions for

the conjugate heat transfer problem with the Kurzweg analysis (1985a) presented above.

The operating parameters for these cases are listed in Table 8.1. Since the solution for

the temperature profile (Eqs. 8.1-8.5) are based on the flow being driven by a sinusoidally

varying pressure gradient they have to be modified to account for the sinusoidal velocity

input boundary conditions.

Table 8.1: Test cases investigated for the conjugate heat transfer.

TEST

CASE

_emax

75

12000

Ira

2.5

400

L / D l

6O

6O

Twa l l

n/a

_/a

Twe s t

274

274

Tea s t

273

273

A I

0.250

0.250

ORiGiNAL P_EIS
of  o , mrv
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Essentially this involves two changes, first there will be a phase difference (fiT)

added to the time variable (_o t) and the function f (rl) in Eq. (8.2) should be replaced

by f,_ (rl) found from Eq. (7.8). The rationale behind this was explained in the fluid

flow section. With these modifications the analytical temperature profile for a sinusoidal

velocity input is given by:

_i_t+_r) (8.6)T(x,y,t) = [ Tx+yag(_) e ]

Where g (q) is got from Eq. (8.2) or Eq. (8.3) depending on the fluid or the solid portion

respectively. As mentioned earlier the function f ( q ) should be replaced by the function f_ ( rl )

given by eq. (7.8). The phase difference is given by:

_T = 180° + _U (8.7)

The t'0_ is gotten from eq. (7.6) and the 18(F addition is due to the fact that tile

temperature gradient (_,) used by Kurzweg is opposite in sign to the one used by the

numerical simulation.

Figure 8.1 shows the temperature profile for case R_, .Ro,_,," 75 and Va" 2.5.

The instantaneous temperature (T Tx) or more appropriately the instantaneous

temperature fluctuation is plotted versus the normalized distance from the centerline to

the wall (y direction) at different velocity phase angles ( from 30 ° to 360 ° with 30"

increment). The symbols are used for the analytical solution and the dotted line for the

present work, the profiles were compared at the axial mid plane (L/J so that the

entrance effects are negligible. Since the Valensi number (va) is low the profile exhibits

the familiar parabolic shape as found in the steady state solution. Also the temperature
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gradient at the wall changes sign with the flow reversal or the wall heat flux is in phase

with the mean or inlet velocity. The temperature fluctuation is almost zero in the solid

because of the high heat capacity of the solid hence the constant K2 in Eq. (8.3) tends to

zero with the result that gs (1"1) is zero for the whole cycle. Otherwise for low va and

low o (ratio of heat capacities of the solid and fluid) the temperature fluctuations within

the solid is as high as in the fluid.

Figure 8.2 shows a similar figure for case R2, .Ren_x "_ 12000 and Va" 400 which

is a high va case. Some interesting points to notice about this case are the presence of

an inviscid core just like in the velocity plots due to the high frequency and the sharp

temperature gradient at the wall which is out of phase with the incoming fluid. Also the

temperature fluctuation is zero within the solid due to both the high heat capacity of the

solid and the high va. In fact one of the effects of high frequency on the temperature

fluctuations in the solid (for a low heat capacity) is to bring the fluctuations down to zero.

But due to both these factors present in this particular case it is difficult to isolate which

has a more pronounced effect on the temperature distribution. Further the temperature

fluctuation for case R_, is more (:_0.17) than for case R_ (:_0.035) which is a direct of the

frequency or the presence of an inviscid core.

Form Figures 8.1 and 8.2 one can clearly see that the agreement between the

analytical solution and the numerical predictions are excellent. The reason for the poor

agreement for the high va case than the low va can be attributed to the limitation of the

machine in evaluating complex numbers algebra. Therefore special limiting procedures

had to be performed on Eq. (8.2)-(8.5) so as to simplify them.
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8.2 5ylnmetric Temperature Inflow

The results for the heat transfer in circular tubes for a symmetric temperature

inflow conditions with constant wall temperature are presented now. This type of heat

transfer situation is close to what is found in the cooler and heater tubes of a Stifling

engine. Table 8.2 lists all the cases investigated which cover a wide range of Re,,_a _, Va

and At. All the cases beginning with "C" stand for the cooler conditions and "H" for the

heater conditions. In all the cases the flow enters the tube from the west end of the tube

for the first half cycle (0 ° to 180°), and then reverses and enters from the east end of the

tube for the next half cycle (180 ° to 360°). In the case of symmetric inflow the flow

enters the tube with the same constant temperature (enthalpy) for both half cycles. All

the calculations were done for 52x52 grid and the runs were made on a Cray YMP 8/8128

(sn 1040). Each run took approximately 1000s of CPU time for each cycle and at least

3 cycles were needed for cyclic convergence or for the temperature profile to settle down

from one cycle to the other. The computaional domain with the appropriate boundary

conditions is sketched in Fig. (8.3), due to symmetry the computations were done only

for half of the tube.

8.2.1 Temperature Profiles

Figures 8.4 and 8.5 are 3D pIots for the nondimensional temperature profiles for

the whole tube for two cooler cases with the same At. The nondimensional temperature

( I ( T-T w) / ( Tln-T w) I ) is plotted against the pipe radius and the axial distance at

different velocity phase angles ( from 0 ° to 180 ° with 30 ° increment). Since the

temperature inflow is symmetric the other half cycle is a mirror image of the events
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Table 8.2: Test cases investigated for symmetric temperature inflow.

TEST Rema _

CASE

C, 15000

C_ 30000

C 3 60000

C4 10000

C 5 20000

C 6 40000

H, 8250

H_ 16500

H_ 33500

Va

175 60 325 340

350 60 325 340

700 60 325 340

200 70 325 340

400 70 325 340

800 70 325 340

44 70 650 620

88 70 650 620

176 70 650 620

Teast

340

340

340

340

340

340

620

62O

n I

0.714

0.714

0.714

0.357

0.357

0.357

1.340

1.340

620 1.340



occurringin thefirst half.

at any instantof time.

Fig. 8.4showsthe coolercaseC: ( Rer_ "_ 30000, Va-- 350, L/D h
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The direction of the flow is pointed by the thick bold arrow

= 60 and Ar =

0.714 ), the flow enters with constant temperature (340 °K) and gets cooled due to the

presence of a cold wall maintained at a constant temperature T-- 325 °K. One can see

as the cycle proceeds the thermal front advances into the tube but due to the high va the

profile across the radius does not develop into the familiar parabolic shape. The cooling

process occurring is very complex due to the presence of cold and hot regions, at the

beginning of the cycle (0 °) the fluid is cooler at the entrance (for this part of the cycle)

x/D_, " 0 than at the exit X/Dh = 60. The presence of these cold and hot "spots"

effects the heat transfer mechanism in the tube as the flow proceeds along the tube. If

one looks at the trace of the centerline (z--0) throughout the half cycle (0 ° to 180°), the

temperature drops to a minimum at some axial location at any point in the cycle and then

monotonically increases due to the presence of the hot spot ahead (in the axial direction).

During the course of the cycle as the thermal front advances this temperature minimum

moves further down the tube or closer to the exit and the Ar being less than 1, this

minimum temperature stays within the tube. Further due to the high Va the temperature

gradient at the wall (z" + 0.05) is very steep suggesting a high wall heat flux.

Fig. 8.5 shows a similar 3D plot for case C_ ( Reread" 15000, Va" 175, L/DI _ -

60 and A_ = 0.714 ), the cooling mechanism is similar to the one described for case C,

except for few perceptible differences. The Valensi number (va) for this case being

lower than case C: the hot temperature core is thinner than the previous case which makes
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the temperature prof'de to be closer to a parabola (e.g. see at 0° velocity phase angle at x� D h

=0). Also the temperature gradient of the wall is less steeper thus implying a lower wall

heat flux. Figures 8.4 and 8.5 one can notice the effect of same Ar by the maximum

penetration distance of the thermal front into the tube which is the same, despite the wall

heat flux being different. The temperature profiles are effected due to different va-

Figures 8.6 and 8.7 are 3D plots for cases H2 ( .Remax E 16500, ,Ca= 88, L/D h =

70 and Ar = 1.34 ) and C 5 ( Rema Z 20000, Va = 400, L/Dh= 70 and As- 0.357 )

respectively. Each case is for different Ar and case H2 is representative of the operative

conditions of a heater in the Stifling engine where case C5 was chosen to isolate the effect

of the relative amplitude of fluid motion. Once again the nondimensional temperature is

plotted against axial distance (x/D_) and the radius of the tube (r), In Fig. 8.6 which

is the heater case H_, one can observe that as the cycle proceeds the thermal front has

penetrated the whole axial distance and the cold "spot" which exists at the exit (x/D_,"

70) is pushed out completely from the tube (at 90°). Whereas for the case C 5 shown in

Fig. 8.7 the hot "spot" (since it is run as a cooler) exists throughout the half cycle. Also

one can notice that lower the Valensi number (Va) the more parabolic the profile is ahead

of the thermal front (or the inviscid hot or cold temperature core is thinner for low va.

8.2.2 Contour Plots

In this section the temperature contours for three of the cases listed in Table :_

will be presented and discussed. These contour plots augments the discussion presented

in the temperature profile section (see above).

Figure 8.8 shows the temperature contours at different velocity phase angles for
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case C__(Az = 0.714). Again the contours are shown only for half of the cycle (0" to 180")

due to symmetrical inflow conditions with the hot fluid entering the tube (at 7= 340 "K)

while the wall is maintained at a colder temperature (at 7= 325 "K). At the beginning

of the cycle (0 °) one can see the presence of hot fluid in the core of the tube (bigger at

the east/left end of the tube) due to the history of hot fluid from the previous cycle. As

the cycle proceeds during the acceleration portion (0 ° to 90 °) advances down the tube and

continues to advance during the deceleration portion of the cycle (90 ° to 180 _) although

at a slower rate. On the other hand the residual hot front from the previous cycle is

retreating out of the tube during the acceleration portion of the cycle and disappears

completely during the deceleration portion of the cycle (90 ° to 180°). The presence of

two hot fronts (one close to the entrance and the other close to the exit), in most of the

cycle, is attributed to the Rem_ x being less than 1.

Figure 8.9 shows the temperature contours for the heater case H2 (At--- 1.34). The

contours are shown only for half a cycle (0 ° to 180 °) with cold fluid (heater) entering the

tube ( T = 620 OK) while the wall being maintained at a hotter temperature ( T" 650 °K).

In this case the cold front advances into the tube from the left end during the acceleration

portion of the cycle and continues to advance during the deceleration portion of the cycle.

Whereas the residual cold front present at the right end of the tube (at 0 °) is pushed out

of the tube during the acceleration portion and disappears completely during the

deceleration portion of the cycle. It is interesting to note that the core of cold fluid in the

tube is thinner than the case C,. (Fig. 8.8) due to lower va.

Figure 8.10 shows the temperature contours for the cooler case C5 (At = 0.357).
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Again,dueto symmetricalinflow conditionsthetemperaturecontoursareshownonly for

half a cycle. The hot fluid entersthe tube at T = 340 _ while the wall is maintained

at a colder temperature (at T = 325 °K) so as to allow the incoming fluid to cool..lust

like in the previous two cases the entering hot thermal front advances into the fluid during

the acceleration portion and continues to advance but at a slower rate during the

deceleration portion of the cycle. Further the residual hot front concentrated near the exit

(right end) retreats out of the tube as the cycle advances but, contrary to the previous two

cases, does nol disappear completely from the tube at end of the half cycle. This can be

attributed to the very low value of Ar (0.357). Despite the high Va the hot fluid core is

thinner at the axial center of the tube than at the ends of the tube which is due to the very

low At. Since the hot thermal front does not penetrate completely into the tube this

means that around the axial center of the tube (away from the ends) the heat transfer

mechanism is dominated by molecular conduction than by convection. This implies that

heat transfer rate is very poor away from the ends.
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8.2.3 Section Average Temperature (Ta)

Figures 8.11-8.13 shows the normailzed section average temperature (Ta) across

the cross-section of the tube versus the dimensionless axial distance ( X/Dh ) at different

velocity phase angles for three cases. The section average temperature is a area weighted

temperature across the tube and is defined as:

iTdA (8.8)
T_,= A

Here dA is an element of cross-section area, and A is the total cross-sectional area of

the tube or channel. All the figures (8.11-8.13) are shown only for half of the oscillation

cycle due to the symmetrical inflow.

Figure 8.11 shows the normalizd Ta versus x/D_ for the cooler Case C: ( Va

=350) at different velocity phase angles. At the beginning of the cycle (0°) most of the

fluid is hot at x/Dh -60 and cold at x/Dh =0 due to the hotter fluid leftover from the

prvious half-cycle. As the flow accelerates the fluid cools rapidly due to the presence of

the cold wall and the cold fluid present close to the entrance ( x/D_ -0), and this

temperature drop continues till it reaches a minimum value at certain axial locations (see

curves for 300,600,90 °) after which it increases monotonically down the tube. This

minimum value keeps changing its axial location as the cycle goes on. But the level of

temperature keeps dropping after the minimum temperature axial location and can be

easily seen from the Figure 8.11 at x/Dh -60. The displacement of the minimum Ta

is dependent on value of A_: too. From Figure 8.12 which is for case H, ( va =88) this

minimum value moves out of the tube as the cycle advances due to Ar being greater than
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one. The "minimum" temperature for the heater should actually be read as the maximum

temperature as the normalized Ta is plotted instead of the true temperature. In the heater

Case H_, the basic heat transfer mechanism is the same as described above for case C, but

the direction of heat transfer reversed since the function is to heat the fluid. The Valensi

number ( va ) effects the amplitude or temperature fluctuation at any given axial location

with time. The heat transfer mechanism behaves similarly for the same At.

8.2.4 Bulk Temperature

The use of the bulk temperature is very prevalent in the design of heat exchangers.

Also known as the mixing cup temperature it is a velocity weighted temperature defined

as:

r D UTdA
Tb = ,, (8.9)

Here Pm and U_ are the mean density and velocity respectively. The mean velocity is

given by the mathematical expression:

f UdA (8.10)
urn-- A

In oscillatory due to "backflow" or conuterflow at the walls at high Va this

definition breaks down apart from the fact that the mean velocity goes to zero at 0", 180"

and 360 ° giving rise to unpysical values for the bulk temperature. Due to these

discrepencies some researchers (Patankar and Oseid, 1992) have used the modulous of the

velocity in Eq. (8.9) instead of the true velocity. With this change the Bulk temperature

( Tb) definition is now given as:
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Figures 8.14-8.16 plots the normalized bulk temperature profiles versus the

dimensionless axial distance ( x/Dh ) at different velocity phase angles for the Cases C_,,

C_ and H 2 respectively. Once again the Cases were chosen such that they represent

different Ar values as the effects and transfer mechanisms are similar for the sameA_

value. The behaviour of the Tb is similar to the trend of 7',, except for few differences.

These differences can be observed by comparing Figures 8.13 and 8.16 which are for the

same heater Case H__, the amplitude of the bulk temperature ( Tb ) is different from the

amplitude of section average temperature (7") fluctuation at any fixed axial location and

even the magnitude of normalized value is different. This differences are of relatively

minor consequence compared to the phase difference that arises between the Tb and the

wall heat flux (¢w H) and which will be shown later in the chapter. The presence of a

phase difference is due to the definition of Tb (Eq. 8.1 I) where the product of the local

axial velocity (U) and temperature ( T ) is taken to evaluate Tb. And, when the va is

high there is phase difference between the velocity and temperature such that their

inntegrated product over a cross-sectional area is different, i.e a situation where the 7"b

is zero can arise if U and 7" are 90 '_out of phase.
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8.2.5Wall heat Flux (¢wI/)

The wall heat flux (¢J_) is the parameter which governs the effectiveness of ay

heat exchanger. Figures 8.17-8.19 plots the ¢,11 normalized with the maximum inlet

enthalpy ( pU_xCpTi" ) versus x/Dh at different velocity phase angles for the three

Cases C2, C5 and H2 representing different Az'S. The negative wall heat flux values

indicates that the direction of heat transfer is from the fluid to the wall, i.e the fluid gets

cooled. The general trend is the wall heat flux increases along the length of the tube at

instant of the cycle and then increases to a maximum or minimum value (depending upon

whether it's a cooler or heater case) along the length of the tube and then starts to

decrease or increase for the rest of the channel length.

Since the wall heat flux is an important design parameter an attempt has been

made to correlate the ¢w_I as a function of A_, Ren_ax, Va, and x/Dn for all the test

cases investigated. The correlation process consisted of two important steps:

," In the first the advantage of symmetric inflow conditions was taken. That is, the

correlation effort was concentrated for only half oscillation cycle.

,- The second step involved Fourier analyzing the data for one half oscillation cycle

(0 ° to 180 °) and then correlate the resulting harmonics.

The correlations were done using curve fitting software and was sufficiently tuned to

handle multiple curve such as arising in oscillatory flows. The correlation arrived at has

the form:

A look at the above correlation reveals that ¢w,I consists of a mean value ( ¢_I )
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_n II

- Cm//+ ¢2//'Sin( 2(o t+_ 2) (8.12)

and an even harmonic component. ¢2" is the amplitude of the harmonic component and @2

phase difference relative to the mean or inflow velocity and ¢" is a heat flux

normalization factor used. As it can be seen the variation of wall heat flux is mathemati-

cally and literally complex in oscilatory flows. All the coefficients are functions of all

the nondimensional parameters and are mathematically found to be:

/! v/-V-_.Rem,×o,i

0.312-0.i_
{ i + 5.5xl0-S'e-aA"(0.5-A r) "(x,IDh) 2

+ [0.84+(i.051/_)]-(Ar-0.5).(1-A z)._27D h 8.13)

+ [0.21+0.1437-1n(Ar) ].(x/Dh) -1.-=}

The mean wall heat flux (¢/') takes the following form:

¢_'= <I.16)'[-i+0.i5.(x/D h) +7.5"vr/7--_h ] 8.14)

and the other coefficients are:

(_2/I= -0.2 ÷ 3.0xl0-31"e -{xlDD + [i/ (0.26 +0.073A r)] "(x/D h)-°'-_ 8.15)

_)z = 26 2.4 - 24.86" [in (A r)]2_ e [-i.e._4-_.6.Ar2.1n(Ar)].(X/D h) 2.

{ l+et-4'756-2"4"Aflln{A')]'(x/Dh) ] 8.16)

The above equation is valid for the first half oscillation cycle (0 ° to 180") for the
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second half oscillation period the same equation is to be used but with x/Dh being

replaced by [L - x/D h ] in all the above equations.

It can be seen that the correlation coefficients take a very complicated functions

of As and X/Dh The above equation was used to validate the numerically calculated

wall heat fluxes _,jl. Figures 8.20-8.22 shows plots the ratio of numerical wall heat flux

to the wall heat flux calculated using the correlation (Eq. 8.12) at select velocity phase

angles for the cases C2, C5 and H,. From the figures it can be concluded that the that the

correlation predicts the numerical _w,/ within 10% for the three cases for the velocity

phase angles shown. The prediction is especially good near the centre of the pipe. the

relatively poor prediction for low Ar values (see Fig. 8.23) has been caused by optimizing

trying to optimize the correlation for higher Ar values (Cases C__and H2).

8.2.6 Heat Transfer Coefficient

The heat transfer coefficient is usually represented by the Nusselt's number (Nu)

which is defined as:

Nu - [_'/]"Dh <8.iv)
[AT]k

Here the AT is the reference temperature difference can be based either on section

average temperature (T a) or the bulk temperature ( Tb ) that is A T=[ T w -T a] or [ Tw -

_].

Since the heat transfer coefficient is the variable used in most heat exchanger

design, care should be taken as to how it is defined. As mentioned earlier the Ta and
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Tb behave very different from each other in oscillatory flows thus making it very

ambiguous as to how the temperature difference should be taken to evaluate the heat

tansfer coefficient. This fact is demonstrated by the Figures 8.24a and 8.24b, in the

former figure the Nusselt's number based on 7,a while in the latter it is based on Tb for

the Case C,. When the section average temperature (Ta) is used the the wall heat flux,

Nusselt's number and Ta are all in phase with each other. Whereas when Tb (Bulk

temperature) is used they are all out of phase with each other (see Fig. 8.24b). Moreever,

when 2rb is used the Nusselt's number shoots to infinity at flow reversal points (tY, 180"

and 360°). It should be noted that the two plots show symmetry in time i.e. the thermal

cycle is repeated twice for one flow cycle, this due to the inflow temperature symmetry

and the plots are made at the channel mid-plane.
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8.3 Asynunetric Temperature Inflow

In this situation the flow enters the tube with a different temperature from one-half

cycle to the other. In the Stirling engine heat exchangers this is the type of temperature

boundary condition one encounters due to the fact the heat exchangers are arranged

connected together. Table 8.3 list the cases investigated under the heater and cooler

conditions as can be seen these are similar to the symmetric temperature inflow condition

cases except for the inlet temperatures.

The asymmetric temperature inflow heat transfer situation is complicated by the

presence of an additional driving potential or the presence of axial heat conduction.

Figure 8.25 shows an schematic representation of the cooler with asymmetric inflow

temperature boundary conditions. In the first period (0 ° to 180 °) the hot fluid ( Th )

enters from the left end of the tube and the second half period (180 ° to 360 °) it enters

with a colder temperature ( T¢ ) from the right end, with the wall being maintained at a

colder temperature ( Tw ) than the either of the inflow temperature (i.e. Tw < Tc <

Th ). The heat transfer mechanism has two driving temperature potentials, ( Tc - Tw )

and ( Th - Tc ) and depending upon which driving potential is greater the heat transfer

mechanism is accordingly effected. In the present study, both ( Tc Tw ) > ( Th -

T¢ ) and ( T_ Tw ) < ( Th - T¢ ) have been investigated, from Table 8.3 it can be

seen that the former condition exists for the heater Cases HA1, HA, and HA 3 and the

latter for the cooler Cases CAj, CA2 and CA._. The presence of axial driving potential

plays a very important role especially in oscillatory flows where the axial heat transport

is greatly augmented (See Kurzweg, 1985a) due to flow oscillation. And if the flow is



Table 8.3: Test cases investigated for asymmetric temperature inflow,

TEST Rerm x

CASE

CA I 15000

CA_ 30000

CA 3 60000

HA l 8250

HA_ 16500

HA3 33500

va L / DI

175 60 325 350

350 60 325 350

700 60 325 350

44 70 650 630

88 70 650 630

176 70 650 630

Yeast

330

330

330

610

610

610

m z

0.714

0.714

0.714

1.340

1.340

1.340



q,.2 

Th
']'C

Th > Tic > To

Figure 8.25. Asymmetrical temperature inflow boundary conditions

representation for the heater.
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at a high Va, additional complications can arise due to the backflow at the wall thus

generating a additional temperature potential between the Stoke's layer and the central

core of the fluid.

Keeping the above observations in mind the temperature profiles for two

representative Cases are discussed next.

8.3.1 Temperature Profiles

Figures 8.26 (a),(b) and 8.27 (a),(b) shows the 3D temperature profiles for the

Cases CA: (Rema_ =30000, Va = 350, At =0.714, Twos t = 350 °K, Toas t = 330 OK)

and HA,_ (Rem_" -16500, Va = 88, Ar =1.340, T_t = 630 °K, Toa_ _ = 610 "K) at

different velocity phase angles. In the discussion to be presented next the inflow

temperature from the west (left) end of the tube Twos t will be referred as Th (Hot

end) and the inflow temperature from the east (right) end of the tube T_ae t will be

referred to as Tc (Cold end). Since the inflow is asymmetric with time the prof'des are

shown for the complete cycle.

Figure 8.26 (a),(b) shows the 3D temperature profile plots for Case CA 2 ( va "

350) in the whole tube for every 30 ° increment of the oscillation cycle (30°,60°,90°,...,

360°). In the first half cycle (0" to 180 °) [ Fig. 8.26a ] hot fluid with temperature Th --

350 °K enters from the west end of the tube and in the next half cycle (180 ° to 360 °) [

Fig. 8.26b ] the flow enters from the east end with a lower temperature Tc = 330 OK

with the wall being maintained at the lowest temperature Tw - 325 °K. At the

beginning of the cycle the flow enters from the hot end with Th (350 OK) with most of
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the tube at a colder temperature due to the temperature history of the previous cycle.

When the cycle begins most of the fluid in the tube is at a colder temperature Tc (330

°K) due to the temperature history effect of the previous cycle. Then the hot thermal

front advances into the tube from the west end of the tube ( x/D h -0) as the cycle

proceeds (60 _) pushing the cold thermal front out of the tube ( x/Dh '=60), just like in

the symmetric inflow situation. But due to the presence of the driving potential ( Th

Tc ) the hot thermal front does not appear till late in the accelerating phase (60°). The

effect of high va can be seen by the presence of thick hot central core and due to ( Tc

Tw ) < ( Th - Tc ), the temperature of the thick central core never falls below T¢

(330 OK) in the whole cycle despite the presence of a much colder wall ( Tu = 325 °K).

Further the effect of this driving potential can be seen forward of the hot thermal front

where the temperature of the core drops almost quasi-linearly to the temperature of the

cold frent (see Fig. 8.26a at 60°,90°). As the hot thermal front advances into the tube in

time the fluid ahead of it (near

weaker driving potential ( T_

x/Dh =60) gets cooled by the colder wall but due to the

Tw ) the temperature does not fall below Tc. When

the flow reverses (after 180 ° velocity phase angle) and starts from the right end of the

tube ( x/Dh -60) most of the fluid in the tube is now at the hotter temperature Th (350

°K). Also the driving potential ( Th - Tc ) now acts in a direction opposite to the flow

direction, thereby the hot fluid present near the left end of the tube ( x/Dh =0) cools

rapidly as the second half cycle proceeds (210 ° to 360_). Hence it aids the cooling

process done by the colder wall temperature.

Figures 8.27a and 8.27b shows the 3D temperature profiles for Case I-IA2,Rema,,



=16500, va = 88, Ar =1.340, T_,a_t = 630 °K, T_as t = 610 OK and Tw = 650 OK.

In this case the longitudinal temperature driving potential ( Tw Tc ) is greater than the

axial temperature driving potential ( Th T¢ ). Hence the heat transport from the wall

dominates over the axial heat transport. In the first half of the cycle (0 ° to 180 °) the flow

enters from the west or "hot" end with Th - 630 °K and the next half cycle (180" to

360") the flow reverses and enters from the east or "cold" end. Figure 8.27a shows the

temperature profiles for the first half cycle, as can be seen the effect of the advancing

thermal front appears quickly at around 60 ° velocity phase angle. Prior to that the flow

within the tube is cooler than the incoming fluid due to the temperature history of colder

fluid entering from the "cold" end (see Fig. 8.27b at 360°). Because of high As the front

starting from x/Dh =0 advances into the tube and continues to advance as the cycle

proceeds. Since the flow is in the same direction as the axial driving potential ( Th - the

whole tube gets heated up to more than the incoming fluid temperature at the end of the

half cycle (180°). When the flow reverses (180 ° to 360 °) thereby opposing this axial

temperature driving potential the heating process is not as effective as for the previous

half cycle (see Figure 8.27b) despite a high longitudinal temperature driving potential.

Therefore at 360 ° one can observe that the flow actually "cools" at the exit (in this

situation x/Dh "0) rather than increase in the temperature.

Hence it can be concluded that the axial temperature driving potential plays a

crucial role in the effectiveness of the heat exchanger during the whole complete cycle.
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CHAPTER IX

CONCLUSIONS

A summary of the computational results for the flow and thermal analysis in three

different components of the Stirling engine, namely, Regenerator, Cooler and Heater are

presented next. The cases investigated are summarized in Table 6.1 and they represent

the operating conditions of NASA Space Power Research Engine in terms of Roma _, Va,

L/D h , and A_. In actual engine operating conditions, all the cases examined (except

for Case R 0 should go through the laminar/transition/turbulent flow regimes throughout

the cycle. This study was focussed on the effects of oscillatory flow under laminar flow

conditions with constant thermophysical properties.

Cases R 1 and R__resemble the Regenerator and have been modeled using the conjugate

heat transfer problem with a two-parallel-plates channel. Cases Cj, C2 and C 3 as well as

Hi, H, and H3 are modeled using the circular pipe geometry with isothermal wall,
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resemblingtheCoolerandHeaterrespectively.

The conclusionsfrom the computations are as follows:

The fluid flow and heat transfer for regenerator (Case R 1) are quasi-steady

i.e. the velocity and temperature profiles are parabolic and in phase. For

high Va (Case R,_) "backflow" or flow reversal takes place near the wall

during the decelerating portions of the cycle resulting in flat temperature

and velocity profiles in the core of the channel. In these situation the

viscous effects are restricted to a small region next to the wall and is

known as the Stoke's layer.

,- The Cases R_ and R 2 were not only used to study the foil type regenerator

but also to validate the numerical code by comparing the computational

results with the analytical solution under similar operating conditions. The

comparison was not trivial because the analytical work was based on

oscillatory pressure boundary condition for an infinite channel, while the

computational work was done for a finite channel with sinusoidally varying

velocity boundary condition. The numerical results compared very well

with the reformulated analytical results.

,- For oscillatory flows in parallel-plates-channel the wall shear stress ( _ w )

and pressure drop (A p) are augmented by almost factors of 5 and 80

respectively, as the Va increases. Also they are out of phase with the

velocity by 45 ° and 90 ° as the va increases.

,- The instantaneous entrance length is controlled by the Ar value. For highAr
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values (HcH 3 & CI-C3) it is difficult to define a fully developed flow

conditions as the instantaneous friction factor does not settle with the axial

distance. But in general the entrance effects are restricted to a small region

into the channel.

The heat transfer results show for the cooler and heater with symmetric

temperature inflow conditions show that the heal transfer coefficient (at the

channel mid-plane) goes through two cycles per each flow cycle. Also, at

high va the temperature profile is out of phase with the velocity profile.

The heat transfer mechanism are controlled by the temperature "history"

effects which reveals itself by the presence of "hot" and "cold" spots during

the cycle.

The usual definition of the heat transfer coefficient in the case of

oscillatory flows is ambiguous and limited due to the way the temperature

difference is determined. The common practice of using the bulk or

mixing cup temperature (Tb) as the reference for evaluating the

temperature difference breaks down due to the flow reversal close to the

wall during parts of the cycle for high va, especially for laminar flows.

This ambiguity was resolved in the study by using the absolute value of

the velocity in the definition of bulk temperature and then evaluate the heat

transfer coefficient.

Using the section average temperature (7,a) as the reference temperature

for the temperature difference, the wall heat flux, temperature difference,
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andtheNusslet'snumberareall in phasewith eachotherandout of phase

with thevelocity. Theabovequantitiesareall symmetricabout180"atthe

channelaxialmid-planeotherwisetheshapeis different from thefirst half

cycle to the secondhalf cycle.

Using thebulk temperatureasthereferencetemperaturethe wall heatflux

and the temperaturedifference are out of phase with each other

(accordingly Nusselt's number) and with the velocity. Also, the

temperaturedifferencepassesthroughzero and accordingly,the Nusselt

numbershootsto infinity.

The asymmetricinflow temperatureconditionshasadrasticeffecton the

heattransfermechanism.Thetwo temperaturedriving potential(oneaxial

and the other longitudinal) control the direction of the heat transfer

mechanism.

9.1 Scope for Further Research

The primary objective of this research was to investigate the thermal field in a two

dimensional simulation of the Stirling engine heat exchangers. The analysis presented in

this study was done independently for each of the Stirling engine. The present study can

be augmented by:

," Connecting the components together, i.e., the regenerator, cooler and heater in one

direct two dimensional simulation to better understand the effects of oscillating

flow in each component.
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addingcompressibilityeffectsby introducingthe two pistons found in the engine

and thus facilitate a complete two dimensional engine simulation.

introducing empirical turbulence model into the code to simulate the transition

from laminar to turbulent flow and thus improve the predictions for engine losses.
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APPENDIX B

DERIVATION OF PRESSURE CORRECTION EQUATION

In the step 3) of the SI_'ff'LE algorithm described in section 5.5.1 it was

mentioned that a pressure correction equation is needed to correct the velocities such that

the continuity equation. This pressure correction equation is derived from the discretized

continuity and momentum equation. The continuity equation (3.1) when discretized with

respect to cartesian coordinate system yields:

P -PPSv + mx, rex, w + m,. n - my, s- = 0 <B.1)
St e .,

eq. (B.l) is nothing but a mass balance over a control volume, substituting for the mass

fluxes for the respective CV faces from eq. (5.6), one gets:

o

PP- PP8 (B 2 )
v + p_UeSy - p,.UwSY + PnV=Sx - psVsSx = 0

Since the velocities U ° and V* obtained from the solution of the momentum equations

in steps l) and 2) of the SIMPLE algorithm were based on a guessed initial pressure field,

the continuity equation (B.2) will not be satisfied yielding a mass source Srn:

P°-P----------PSv+ p_u_y - p,.Uwt_V * p,_V;t,x - psv_tax = s,, (B.3)
6t

Here the "*" indicates the newly found velocities from the momentum equations. To

eliminate the mass source S m, velocity corrections need to performed to enforce mass

corrections, then the velocity corrected continuity equation becomes by definition:



z_f

0_
P_'-PPsv + pe(E;+U'e)_V - p,,,(rJ'_, +U/,.) 8y

6C - '
(B.4]

+ pn(v;+v/,_)Sx - p_(v;+v',)Sx = o

Subtracting eq. (B.3) from eq. (B.4) yields an equation for the velocity corrections,

namely:

poU/ 8y- pwUlwSy + PnVln6x- PsV's6x = -S m (B.5)

Now the velocity corrections are related to the pressure corrections P'. The discretized

momentum equations are used to couple the velocity and pressure. By linearizing the

velocity corrections it can be related to the pressure corrections as:

U ! = - (-_-i)e (PIE-P' p) (B.6)
e ap

= - ( l-!-)w(P'P-P'w) (B.7)
Ulw ap

V / = - (i---)n (PIt_-PI P) (B.8)
n ap

I ) (pip_pis) (B.9)
Vls = - ( a--ps

Substituting eqs. (B.6)-(B.9) into equation (B.5) yields the so called pressure correction

equation:



a_Ip = a_/w + aEP/E + asP/s + a_PIN - S_ (B.IO)

a complete description of the coefficients can be found in Peri_ and Scheuerer (1989).

This pressure correction equation (B.10) has the same structure as the other

discretized equations hence can be solved using the same matrix solver. The boundary

conditions for the pressure correction equations are derived from the velocities at the

boundary. The way this is achieved is by setting the velocity corrections at the

appropriate CV boundary face to be zero.

Since the pressure and velocity are nonlinearly coupled the SIMY'LE algorithm

diverges if no underrelaxation is employed, in the present code the pressure is corrected

by the following equation:

pp* = P; + aPpIp

where tt P is the underrelaxation factor for pressure and is usually in the range 0.2-0.4.


